Matrix with Zero Sequence
Reduction set to On
Matrix with Zero Sequence Reduction set to Off
Matrix for winding with 150°
leading
-1 1 0
1
0 1 1
3
1 0 1
× -
-
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1238 V1 EN-US (Equation 14)
Not applicable. Matrix on the left used.
Matrix for winding with 120°
leading
1 2 1
1
1 1 2
3
2 1 1
- -
× - -
- -
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1239 V1 EN-US (Equation 15)
0 1 0
0 0 1
1 0 0
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1240 V1 EN-US (Equation 16)
Matrix for winding with 90°
leading
0 1 -1
1
-1 0 1
3
1 1 0
×
-
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1241 V1 EN-US (Equation 17)
Not applicable. Matrix on the left used.
Matrix for winding with 60°
leading
1 1 2
1
2 1 1
3
1 2 1
-
× -
-
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1242 V1 EN-US (Equation 18)
0 0 1
1 0 0
0 1 0
-
-
-
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1243 V1 EN-US (Equation 19)
Matrix for winding with 30°
leading
1 0 -1
1
-1 1 0
3
0 1 1
×
-
é ù
ê ú
ê ú
ê ú
ë û
EQUATION1244 V1 EN-US (Equation 20)
Not applicable. Matrix on the left used.
By using this table complete equation for calculation of fundamental frequency differential
currents for two winding power transformer with YNd5 phase shift and enabled zero sequence
current reduction on HV side will be derived. From the given power transformer phase shift the
following is possible to be concluded:
1. The HV wye (Y) connected winding will be used as the reference winding and zero sequence
currents shall be subtracted on that side
2. The LV winding is lagging for 150°
With the help of table
57, the following matrix equation can be written for this power transformer:
_ 2 1 1 _ _ 1 1 0 1 _ _ 2
1 _ 2 1
_ 1 2 1 _ _ 1 1 1 0 _ _ 2
3 _ 1
3
_ 1 1 2 _ _ 1 0 1 1 _ _ 2
- - -
= × - - × + × × - ×
- - -
é ù é ù é ù é ù é ù
ê ú ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú ê ú
ë û ë û ë û ë û ë û
ID A I A W I A W
Vr W
ID B I B W I B W
Vr W
ID C I C W I C W
EQUATION1810-ANSI V1 EN-US (Equation 21)
1MRK 502 066-UUS B Section 6
Differential protection
123
Technical manual