EasyManua.ls Logo

Emerson ROSEMOUNT 5300 - System Architecture

Emerson ROSEMOUNT 5300
324 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Reference Manual
00809-0100-4530, Rev BA
July 2009
2-7
Rosemount 5300 Series
SYSTEM
ARCHITECTURE
The Rosemount 5300 Series Radar Transmitter is loop-powered, and it uses
the same two wires for both power supply and output signal. The output is a
4-20 mA analog signal superimposed with a digital HART
®
or FOUNDATION
Fieldbus signal.
By using the optional Rosemount 333 HART Tri-loop, the HART signal can
convert up to three additional 4-20 mA analog signals.
With the HART protocol multidrop configuration is possible. In this case,
communication is restricted to digital, since current is fixed to the 4 mA
minimum value.
The transmitter can be connected to a Rosemount 751 Field Signal Indicator,
or it can be equipped with an integral display.
The transmitter can easily be configured using a Rosemount 375 Field
Communicator or a PC with the Rosemount Radar Master software.
Rosemount 5300 Series transmitters can also be configured with the AMS
®
Suite and DeltaV™ software, and other tools supporting Electronic Device
Description Language (EDDL) functionality.
For HART communication a minimum load resistance of 250 within the loop
is required.
Figure 2-5. HART system
architecture
4-20 mA/HART
Rosemount 751
Field Signal Indicator
Rosemount 375
Field
Communicator
HART modem
5300 SERIES
RADAR
TRANSMITTER
DCS
Rosemount
333 HART
Tri-Loop
3 x 4-20 mA
Rosemount Radar Master
or
AMS Suite
Integral
Display
Note! For HART communication, a
minimum load resistance of
250 within the loop is required.

Table of Contents

Other manuals for Emerson ROSEMOUNT 5300

Related product manuals