EasyManua.ls Logo

Commodore VIC-20 - Page 338

Commodore VIC-20
404 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
324
The
VIC
20
User
Guide
0.895
16
....----·14.320
16
F
5.i~~
l
1.9~~
0.E51E
16
I 14.720
Functions
that
are not intrinsic to VIC BASIC may be calculated as in
Table D-3.
TAILE
1).3.
Deriving Mathematical Functions
Function
VIC BASIC Equivalent
Secant
SEC(X)
= 1/ COS(X)
Cosecant
CSC(X)
= 1/ SIN(X)
Cotangent
COT(X)
= I/TAN(X)
Inverse sine
ARCSIN(X)
= ATN(X/ SQR( - X*X +
Inverse cosine
ARCCOS(X)
= - ATN(X/ SQR
(-X*X
+
+ 7r/2
Inverse secant
ARCSEC(X)
= ATN(X/SQR(X*X -
Inverse cosecant
ARCCSC(X)
= ATN(X/ SQR(X*X -
+ (SGN(X) -
1)*
7r/2
Inverse cotangent
ARCOT(X)
= ATN(X) + 7r/2
Hyperbolic sine
SINE(X)
= (EXP(X) -
EXP(-
X»/2
Hyperbolic cosine
COSH(X)
= (EXP(X) + EXP( -
X»/2
Hyperbolic tangent
TANH(X)
= EXP( - X)/EXP(X) + EXP
(-X»*2
+'1
Hyperbolic secant
SECH(X)
= 2/ (EXP(X) + EXP( -
X)
Hyperbolic cosecant
CSCH(X)
= 2/ (EXP(X) - EXP( -
Hyperbolic cotangent
COTH(X)
=
EXP(-
X)/(EXP(X)
- EXP( -
X)*2
+ I
Inverse hyperbolic sine
ARCSINH(X)
= LOG(X + SQR(X*X + I)
Inverse hyperbolic cosine
ARCCOSH(X)
= LOG(X + SQR(X*X - I)
Inverse hyperbolic tangent
ARCTANH(X)
= LOG«(l +
X)/(I
-
X»/2
Inverse hyperbolic secant
ARCSECH(X)
= LOG«SQR
(-
X*X + I) +
I/X)
Inverse hyperbolic cosecant
ARCCSCH(X)
= LOG«SGN(X)*SQR
(X*X +
I)/X
Inverse hyperbolic cotangent
ARCCOTH(X)
= LOG«X +
I)/(X
-
1»/2

Other manuals for Commodore VIC-20

Related product manuals