324
The
VIC
20
User
Guide
0.895
16
....----·14.320
16
F
5.i~~
l
1.9~~
0.E51E
16
I 14.720
Functions
that
are not intrinsic to VIC BASIC may be calculated as in
Table D-3.
TAILE
1).3.
Deriving Mathematical Functions
Function
VIC BASIC Equivalent
Secant
SEC(X)
= 1/ COS(X)
Cosecant
CSC(X)
= 1/ SIN(X)
Cotangent
COT(X)
= I/TAN(X)
Inverse sine
ARCSIN(X)
= ATN(X/ SQR( - X*X +
1»
Inverse cosine
ARCCOS(X)
= - ATN(X/ SQR
(-X*X
+
i»
+ 7r/2
Inverse secant
ARCSEC(X)
= ATN(X/SQR(X*X -
I»
Inverse cosecant
ARCCSC(X)
= ATN(X/ SQR(X*X -
I»
+ (SGN(X) -
1)*
7r/2
Inverse cotangent
ARCOT(X)
= ATN(X) + 7r/2
Hyperbolic sine
SINE(X)
= (EXP(X) -
EXP(-
X»/2
Hyperbolic cosine
COSH(X)
= (EXP(X) + EXP( -
X»/2
Hyperbolic tangent
TANH(X)
= EXP( - X)/EXP(X) + EXP
(-X»*2
+'1
Hyperbolic secant
SECH(X)
= 2/ (EXP(X) + EXP( -
X)
Hyperbolic cosecant
CSCH(X)
= 2/ (EXP(X) - EXP( -
X»
Hyperbolic cotangent
COTH(X)
=
EXP(-
X)/(EXP(X)
- EXP( -
X)*2
+ I
Inverse hyperbolic sine
ARCSINH(X)
= LOG(X + SQR(X*X + I)
Inverse hyperbolic cosine
ARCCOSH(X)
= LOG(X + SQR(X*X - I)
Inverse hyperbolic tangent
ARCTANH(X)
= LOG«(l +
X)/(I
-
X»/2
Inverse hyperbolic secant
ARCSECH(X)
= LOG«SQR
(-
X*X + I) +
I/X)
Inverse hyperbolic cosecant
ARCCSCH(X)
= LOG«SGN(X)*SQR
(X*X +
I)/X
Inverse hyperbolic cotangent
ARCCOTH(X)
= LOG«X +
I)/(X
-
1»/2