30
G
RAPHING
T
ECHNOLOGY
G
UIDE
: TI-82
Copyright © Houghton Mifflin Company. All rights reserved.
: (-B+
D)/(2A) → M ((-) ALPHA B + 2nd ALPHA D) ÷ ( 2 ALPHA A )
STO➧ ALPHA M ENTER
calculates one root and stores it as M
: Disp M PRGM ► 3 ALPHA M ENTER
displays one root
: (-B-
D)/(2A) → N ((-) ALPHA B – 2nd ALPHA D) ÷ ( 2 ALPHA A )
STO➧ ALPHA N ENTER
: Disp N PRGM ► 3 ALPHA N ENTER
: Else PRGM 3 ENTER
continues from here if the discriminant is not positive
: If D = 0 PRGM 1 ALPHA D 2nd TEST 1 0 ENTER
tests to see if the discriminant is zero
: Then PRGM 2 ENTER
in case the discriminant is zero, continues on to the next line;
if the discriminant is not zero, jumps to the command after Else below
: Disp “DOUBLE ROOT” PRGM ► 3 2nd A-LOCK " D O U B L E
O
R O O T "
ENTER
displays a message in case there is a double root
: -B/(2A) → M (-) ALPHA B ÷ (2 ALPHA A) STO➧ ALPHA M ENTER
the quadratic formula reduces to
2
b
a
−
when D = 0
: Disp M PRGM ► 3 ALPHA M ENTER
: Else PRGM 3 ENTER
continues from here if the discriminant is not zero
: Disp “COMPLEX ROOTS” PRGM ► 3 2nd A-LOCK " C O M P L E X
O
R O O T S "
ENTER
displays a message in case the roots are complex numbers
: Disp “REAL PART” PRGM ► 3 2nd A-LOCK " R E A L
O
P A R T " ENTER