33
23
Complex numbers and polar coordinates
As an example, for the complex number ,
we may write in polar coordinates, by letting
=
where .
The product of two complex numbers in polar form is
.
Program
?→ A:?→ B:√(A
2
+B
2
)→ X:cos
-1
(A ÷ X)→ Y:X Y < 31 STEP >
INPUT A : real part
a
B : imaginary part
b
OUTPUT X : the distance from the origin Y : the angle
from the real line
Execution Example:
, when written in polar coordinates is .
To obtain the answer in degrees, press before
executing the program.
ω
abi+=
ω
ω r θ
cos i
θ
sin+()
a + bi
θ
r
ra
2
b
2
+
θ
cos
a
r
---=
θ
sin
b
r
---=,,=
r
θ
cos i
θ
sin+()r′
θ
cos i
θ
′sin+()× rr′
θθ′
+()cos i
θθ′
+()sin+()=
θ
ω
22i+=
ω
22
π
4
---cos i
π
4
---sin+
=
MODE MODE MODE
MODE
2
Rad
Prog
1
S A
D R
P1
P2 P3 P4
G
2
EXE
2
EXE
Disp
S A
D R
P1
P1
P2 P3 P4
G
8
EXE
S A
D R
P1
P2 P3 P4
G
MODE MODE MODE MODE
1
関数電卓事例集 .book 33 ページ 2002年9月2日 月曜日 午後6時51分