EasyManua.ls Logo

Mitsubishi NF-S Series - Page 76

Mitsubishi NF-S Series
80 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
75
Z
S
= = R
S
+ j X
S
Z
L
+ Z
T
+ Z
M
(Z
L
+ Z
T
) · Z
M
R
S
=
(R
L
+ R
T
+ R
M
)
2
+ (X
L
+ X
T
+ X
M
)
2
(R
L
+ R
T
+ R
M
) {R
M
(R
L
+ R
T
) – X
M
(X
L
+ X
T
)}
+ (X
L
+ X
T
+ X
M
) {X
M
(R
L
+ R
T
) + R
M
(X
L
+ X
T
)}
[
X
S
=
(R
L
+ R
T
+ R
M
)
2
+ (X
L
+ X
T
+ X
M
)
2
(R
L
+ R
T
+ R
M
) {X
M
(R
L
+ R
T
) + R
M
(X
L
+ X
T
)}
– (X
L
+ X
T
+ X
M
) {R
M
(R
L
+ R
T
) – X
M
(X
L
+ X
T
)}
[
]
]
Thus, when calculating the short-circuit current at
various points in a load system, if the value Z
S
is first
computed, it is a simple matter to add the various wire
or bus-duct impedances. Table 9.4 gives values of
total supply impedance (Z
S
), using transformer imped-
ance per Table 9.1, power-supply short-circuit capacity
of 1000MVA, and X/R of 25.
Z
M
Z
B
Z
W
Z
L
L
T
B
W
Short-
circuit
point
M
Z
T
Z
B
Z
M
Z
L
Z
W
Z
T
Z
B
Z
W
Z
Z
S
Fig. 9.2 3-Phase Equivalent Circuits
Table 9.4 Total Impedances for 3-Phase Power Supplies
50
75
100
150
200
300
500
750
1000
1500
2000
Impedance based on
1000kVA(%)
Ohmic value (m)
Transformer capacity
(kA)
Notes: 1. Total power-supply impedance
Z
S
=
Z
L
+ Z
T
+ Z
M
(Z
L
+ Z
T
)Z
M
2. For line voltages (E') other than 230V, multiply the ohmic value by
()
230
2
E'
33.182 +j26.482
21.229 +j22.583
15.473 +j17.109
9.56 +j 12.389
6.977 +j12.15
4.306 +j 8.795
2.089 +j 7.27
1.427 +j 5.736
0.969 +j 4.336
0.671 +j 3.142
0.467 +j 2.544
230V
17.553 +j 14.009
11.230 +j 11.946
8.185 +j 9.051
5.057 +j 6.554
3.691 +j 6.427
2.278 +j 4.653
1.105 +j 3.846
0.755 +j 3.034
0.513 +j 2.294
0.355 +j 1.662
0.247 +j 1.346
440V
64.240 +j 51.269
41.099 +j 43.720
29.956 +j 33.123
18.508 +j 23.985
13.507 +j 23.522
8.336 +j 17.027
4.044 +j 14.074
2.763 +j 11.104
1.876 +j 8.394
1.299 +j 6.083
0.904 +j 4.925

Related product manuals