EasyManua.ls Logo

Sharp PC-1403 - Page 59

Sharp PC-1403
252 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
53
[(No
.
o
f rows
o
f
m
atr
i
x
X
)
x
(
No
.
o
f
c
o
lumns
o
f
ma
t
rix
X
)
x
8
+
7
] b
y
t
es
+
[(No
.
o
f
rows
o
f
m
atrix
l
'
)
x
(
N
o.
of
co
lu
mns of
m
a
trix
Y)
x
8
+
7]
by
t
e
s
+
[N
o
.
o
f rows
o
f
m
a
trix M) x
(
No
.
of
c
o
lum
n
s
o
f ma
t
rix M)
x
8
+
7
]
b
ytes
+
[
No
.
o
f
row
s
of
res
ult
a
nt
mat
r
ix
)
x
(No
.
of
c
ol
umn
s
of
resu
l
tant
matr
i
x
)
x
8
+
7
)
b
yte
s
Memory
Capaci
t
y
Required
for
Matri
x
Ca
lc
ulations
•
Beca
u
se
m
atr
i
x
calcu
l
a
ti
o
n
s
sha
re
t
h
e same
m
emory area as
t
h
at
u
sed
f
or
B
AS
I
C
pro
g
rams,
u
n
u
s
ed
m
e
m
ory ca
p
aci
t
y
(
i
.
e
.,
c
apacity
deter
minab
l
e by MEM
I
ENTER
)
i
n
BA
SIC
m
ode
)
mu
s
t
be
l
a
r
ge
r
tha
n
the
capac
i
ty det
er
mi
n
ed by
t
h
e
f
o
l
l
o
w
ing
f
o
rm
u
l
a
:
So
t
h
e
re
s
u
l
t
s
o
btaine
d
by
co
mpu
te
r
s
m
ay
h
a
v
e
s
u
c
h
a
n
e
rr
o
r.
P
lease
n
ot
e
t
h
a
t verification by
an
y
oth
e
r
m
e
th
o
d
may
b
e
r
eq
u
ired
de
p
ending on
h
o
w
m
a
trix
c
a
l
c
u
la
t
io
n
s
will be
a
ppl
i
ed
.
I
n
t
he
abo
v
e
exampl
e
,
when you obtain
th
e
de
t
e
rm
i
nan
t
v
a
l
u
e by
mul
t
iply
-
i
ng
th
e
or
ig
i
na
l
matr
i
x
X
by
3
,
you
c
an
c
on
f
irm
tha
t
m
a
tri
x
Xis
n
ot a
regula
r
matr
ix
be
c
a
u
s
e t
h
e
re
sult
o
f the
mu
l
t
i
plica
it
o
n
b
e
c
o
me
s 0
{rn
~l
=
O
).
Note:
B
e
c
a
u
se
a
ma
t
rix
c
a
l
c
ul
at
ion will
n
ot be
c
omp
l
eted
b
y a single
o
pera
ti
on
(
e.g.,
o
n
e-
t
im
e
multip
l
icat
i
on
)
,
i
t
w
ill
t
a
ke
s
o
m
e
tim
e
t
o co
m
plete the
c
a
l
c
ula
t
ion
.
It
w
i
ll
take abo
u
t
6
se
co
n
ds
t
o solve
f
o
r
th
e
i
nv
er
se
matr
ix of
a
un
it
m
a
t
ri
x
co
n
sis
tin
g of
7
rows and
7
co
l
umns. This
calcu
la
ti
on
ti
me varie
s
depend
in
g on the va
l
u
e
s
o
f
m
a
t
rix
e
l
em
e
nts
.
1.
E
1
0
J
-
3
.
E
10
1
J
-1
=
[
-
1
3
.
3
E
.
1
.
.
0
3. 0
.
33
..
.
3
This
m
a
tr
i
x
i
s
n
o
t
a
re
gular matrix
a
nd
t
hu
s
h
as
n
o
in
ve
r
se matrix
t
h
e
o
ret
i
c
a
l
l
y
.
Wi
th
a
n
y
comput
e
r
,
h
o
weve
r
,
th
e
va
lu
e
1
/
3
i
s
i
n
put
a
s
"
0
.33
.
...
.
3
" and
thu
s
a
n
inv
e
r
se matr
ix
e
x
is
t
s
,
r
es
u
l
t
i
ng
in
the
fo
ll
o
wing
.
E
xa
m
pl
e 5:
T
o so
l
ve
f
o
r
t
he
i
n
ve
r
s
e
mat
ri
x
o
f
[
~
Using as a
C
a
lcula
t
o
r

Related product manuals