EasyManua.ls Logo

Sharp PC-1403

Sharp PC-1403
252 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
53
[(No
.
o
f rows
o
f
m
atr
i
x
X
)
x
(
No
.
o
f
c
o
lumns
o
f
ma
t
rix
X
)
x
8
+
7
] b
y
t
es
+
[(No
.
o
f
rows
o
f
m
atrix
l
'
)
x
(
N
o.
of
co
lu
mns of
m
a
trix
Y)
x
8
+
7]
by
t
e
s
+
[N
o
.
o
f rows
o
f
m
a
trix M) x
(
No
.
of
c
o
lum
n
s
o
f ma
t
rix M)
x
8
+
7
]
b
ytes
+
[
No
.
o
f
row
s
of
res
ult
a
nt
mat
r
ix
)
x
(No
.
of
c
ol
umn
s
of
resu
l
tant
matr
i
x
)
x
8
+
7
)
b
yte
s
Memory
Capaci
t
y
Required
for
Matri
x
Ca
lc
ulations
•
Beca
u
se
m
atr
i
x
calcu
l
a
ti
o
n
s
sha
re
t
h
e same
m
emory area as
t
h
at
u
sed
f
or
B
AS
I
C
pro
g
rams,
u
n
u
s
ed
m
e
m
ory ca
p
aci
t
y
(
i
.
e
.,
c
apacity
deter
minab
l
e by MEM
I
ENTER
)
i
n
BA
SIC
m
ode
)
mu
s
t
be
l
a
r
ge
r
tha
n
the
capac
i
ty det
er
mi
n
ed by
t
h
e
f
o
l
l
o
w
ing
f
o
rm
u
l
a
:
So
t
h
e
re
s
u
l
t
s
o
btaine
d
by
co
mpu
te
r
s
m
ay
h
a
v
e
s
u
c
h
a
n
e
rr
o
r.
P
lease
n
ot
e
t
h
a
t verification by
an
y
oth
e
r
m
e
th
o
d
may
b
e
r
eq
u
ired
de
p
ending on
h
o
w
m
a
trix
c
a
l
c
u
la
t
io
n
s
will be
a
ppl
i
ed
.
I
n
t
he
abo
v
e
exampl
e
,
when you obtain
th
e
de
t
e
rm
i
nan
t
v
a
l
u
e by
mul
t
iply
-
i
ng
th
e
or
ig
i
na
l
matr
i
x
X
by
3
,
you
c
an
c
on
f
irm
tha
t
m
a
tri
x
Xis
n
ot a
regula
r
matr
ix
be
c
a
u
s
e t
h
e
re
sult
o
f the
mu
l
t
i
plica
it
o
n
b
e
c
o
me
s 0
{rn
~l
=
O
).
Note:
B
e
c
a
u
se
a
ma
t
rix
c
a
l
c
ul
at
ion will
n
ot be
c
omp
l
eted
b
y a single
o
pera
ti
on
(
e.g.,
o
n
e-
t
im
e
multip
l
icat
i
on
)
,
i
t
w
ill
t
a
ke
s
o
m
e
tim
e
t
o co
m
plete the
c
a
l
c
ula
t
ion
.
It
w
i
ll
take abo
u
t
6
se
co
n
ds
t
o solve
f
o
r
th
e
i
nv
er
se
matr
ix of
a
un
it
m
a
t
ri
x
co
n
sis
tin
g of
7
rows and
7
co
l
umns. This
calcu
la
ti
on
ti
me varie
s
depend
in
g on the va
l
u
e
s
o
f
m
a
t
rix
e
l
em
e
nts
.
1.
E
1
0
J
-
3
.
E
10
1
J
-1
=
[
-
1
3
.
3
E
.
1
.
.
0
3. 0
.
33
..
.
3
This
m
a
tr
i
x
i
s
n
o
t
a
re
gular matrix
a
nd
t
hu
s
h
as
n
o
in
ve
r
se matrix
t
h
e
o
ret
i
c
a
l
l
y
.
Wi
th
a
n
y
comput
e
r
,
h
o
weve
r
,
th
e
va
lu
e
1
/
3
i
s
i
n
put
a
s
"
0
.33
.
...
.
3
" and
thu
s
a
n
inv
e
r
se matr
ix
e
x
is
t
s
,
r
es
u
l
t
i
ng
in
the
fo
ll
o
wing
.
E
xa
m
pl
e 5:
T
o so
l
ve
f
o
r
t
he
i
n
ve
r
s
e
mat
ri
x
o
f
[
~
Using as a
C
a
lcula
t
o
r

Related product manuals