•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
-
-J.<X<I
-\<X<I
)(
'"
'l;;'j
OR
X " 1
~
=.:III:~)(
< - 1
OR
X,.
1
_":J
)(')«1
•••••••
0<
x
'"
1
)«>0
X'X " \
ARCCOSHPc:)
~
LOG(X+ SOR(X'X -11)
ARCTol.NH(X)
.. lOG{(l "XYI' -
X~,,,~~t:::=
ARCSECHlX) _ LOG«SQR(
X'X,
I)
I I)IX)
ARCCSCH(Xl
-
LOO({SGN(X!'SOR()('X +
II
+
1}JX)
AFlCCOnl{X! • LOG((X + !y(l(-1)12
4·
...
TNlll
Valid Inpul RlInge,
.'''--,",.~.
func:tlon
INVERSE
HYPERBOliC
COTANGENT
"
'"
-----Model
1001-----
Derived Functions
FuncHOIl
bprntN
In
T""".
or
MOdel
100
!
~~~;~~r""ZC1~·~·~·~'~'~~~"~~··:;";'~"~·~;";";·;·
::~
R(iIT'"
SEe(X) -
COSECANT CSC(X) - 11SiN(Xj
ClOT
COT(X)
..
lIT1~~
INVERSE SINE AACSIN(C]
..
'ATN(X!SOR(~X'X;
1)
~CQIJlE
AACCOS(l()
~T~~~)('K+n)+1,57~
INVERSE
SECAKT
ARCSEqX) •
ATN
(SOR()('l(-
If)
oj
lSGN(X) _
')"\
~71)(1
)
..
A.!!M
x·)(- »
!
~;;::~:~+\SGN(XJ-l}'1.5708
~~~;::::
INVEASE'COTAlilGE
AACCOT(X)
_
-ATN(X)"
'.5708
M¥PE"'8Q!
C
SINH(X)
,
"~~:E;
HYPERBOLIC COSINE COSHlX) _ (EXPlXj
'EXP(
XlY2
HYPERBOLIC
TANGENT
-rANHlX)"
- Exp(
-)(}I(~+
EXP(
-
X)I'~
HYPERBOlIC SECANT SECH(X) -
21(EXP(X)
+
EXP(
- Xit
HYPEll8OO:::'CCBEC
4
NT
~~~-1Pl"l
HYPERBOLIC COTANGENT COTH(X)
..
EX?!
-KY(EXP(X)-EX?(
- X))·2 .. 1
INVERSE
HYf'Efl8Ol1C
SINE.1!""~;;;
INVERSE
HYPEF130UC
""''''
"""'"
TANGEtlT
INVERSE HYPERBOliC
SECANT
I!'IWR'SE HYl"EaBOLIC
COSECANT