EasyManuals Logo

HP HP-15C Advanced Functions Handbook

HP HP-15C
224 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #123 background imageLoading...
Page #123 background image
Section
4:
Using Matrix Operations
121
Example:
Use the
residual correction program
to
calculate
the
inverse
of
matrix
A for
33 16 72
-24
-10 -57
-8 -4 -17
The
theoretical inverse
of A is
-29/3 -8/3
-32
8
5/2
51/2
8/3 2/3 9
Find
the
inverse
by
solving
AX = B for X,
where
B is a 3 X 3
identity matrix.
First,
enter
the
program
from
above. Then,
in Run
mode, enter
the
elements into matrix
A
(the system matrix)
and
matrix
B
(the
right-hand, identity matrix).
Press
|
GSB
I
[A]
to
execute
the
program.
Recall
the
elements
of the
uncorrected solution, matrix
C:
C
=
-9.666666881 -2.666666726 -32.00000071
8.000000167
2.500000046 25.50000055
2.666666728
0.6666666836 9.000000203
This solution
is
correct
to
seven
digits.
The
accuracy
is
well within
that
predicted
by the
equation
on
page 103.
(number
of
correct digits)
^
9 -
log(||
A||
||C||)
-
log(3)«
4.8
.
Recall
the
elements
of
the
corrected solution, matrix
B:
B
=
-9.666666667
-2.666666667 -32.00000000
8.000000000
2.500000000 25.50000000
2.666666667
0.6666666667 9.000000000
One
iteration
of
refinement yields
10
correct digits
in
this
case.

Table of Contents

Other manuals for HP HP-15C

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the HP HP-15C and is the answer not in the manual?

HP HP-15C Specifications

General IconGeneral
BrandHP
ModelHP-15C
CategoryCalculator
LanguageEnglish

Related product manuals