EasyManua.ls Logo

HP HP-15C - Using f in a Program

HP HP-15C
224 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Appendix:
Accuracy
of
Numerical
Calculations
201
Consequently
the
residual
b
Ac =
(5A)c
is
always relatively
small; quite
often
the
residual norm
||b
Ac||
is
smaller
than
||
b
Ax
||
where
x is
obtained
from
the
true solution
x by
rounding
each
of its
elements
to 10
significant
digits.
Consequently,
c can
differ
significantly
from
x
only
if A is
nearly singular,
or
equivalently only
if
HA"1!
is
relatively large compared with
1/||A||;
where
<r(A)
=
1/(||A||
HA"1!!)
is the
reciprocal
of the
condition
number
and
measures
how
relatively near
to A is the
nearest
singular matrix
S,
since
min
||A-S||
=
a(A)||A||.
det(S)=0
These relations
and
some
of
their consequences
are
discussed
extensively
in
section
4.
The
calculation
of
A~l
is
more complicated. Each column
of the
calculated inverse
1
1/x|(A)
is the
corresponding column
of
some
(A
+
5A)"1,
but
each column
has its own
small
<5A.
Consequently,
no
single small
5A,
with
||<5A||
<
l(T9n
||A||,
need exist satisfying
roughly.
Usually such
a
<5A
exists,
but not
always. This does
not
violate
the
prior assertion
that
the
matrix operations
1
1/x|
and
Q
lie
in
Level
2;
they
are
covered
by the
second assertion
of the
summary
on
page
194.
The
accuracy
of |
l/x|(A)
can be
described
in
terms
of the
inverses
of all
matrices
A + AA so
near
A
that
||AA||s£10~9n||A||;
the
worst among those
(A +
AA)'1
is at
least
about
as far
from
A"1
in
norm
as the
calculated
1
1
/x
|
(
A).
The
figure
below
illustrates
the
situation.
A
+ AA is in
here
(A
+ AA)
1
is in
here
1/x|(A)
is in
here

Table of Contents

Other manuals for HP HP-15C

Related product manuals