EasyManua.ls Logo

IDS NXT rome - Benchmark

IDS NXT rome
32 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
2021-11-08
31
IDS NXT: Technical manual IDS NXT rome
·
Squeeze-and-Excitation layer
·
ReLU activation
·
ReLU6 activation
·
Swish activation
·
Sigmoid activation
·
Batch normalization
Filter kernel/pooling parameters
·
Kernel/pooling window: any rectangle up to 15 x 15 pixels
·
Kernel depth: any depth
·
Kernel/pooling stride: up to 15 pixels
Inference time
See Benchmark
11.1.2 Benchmark
Reference models from tensorflow.keras.applications
Architecture
Input format output format
Single image inference time
[ms]
MobileNet V1 α=1.0
(224, 224, 3) > (1000)
66
MobileNet V1 α=0.75
(224, 224, 3) > (1000)
50
MobileNet V1 α=0.5
(224, 224, 3) > (1000)
34
MobileNet V1 α=0.5
(128, 128, 3) > (1000)
16
MobileNet V1 α=0.25
(224, 224, 3) > (1000)
28
MobileNet V1 α=0.25
(128, 128, 3) > (1000)
12
MobileNet V2 α=1.4
(224, 224, 3) > (1000)
102
MobileNet V2 α=1.0
(224, 224, 3) > (1000)
71
MobileNet V2 α=0.5
(224, 224, 3) > (1000)
47
MobileNet V3 large alpha 1.0
(224, 224, 3) > (1000)
73
MobileNet V3 large alpha 0.75
(224, 224, 3) > (1000)
65
MobileNet V3 small alpha 1.0
(224, 224, 3) > (1000)
33
ResNet50
(224, 224, 3) > (1000)
297
Xception
(224, 224, 3) > (1000)
596
MobileNet_V1_SSD
(300, 300, 3) > (scores: (3323, 81),
boxes: (3323, 4), anchors: (3323, 4))
132

Related product manuals