EN
Proceed as follows to hook the spring in a different hole from the factory set-
tings:
01. Remove the upper barrier cover (fig. 4).
02. Loosen the 2 screws fixing the cabinet door (fig. 5).
03. – (M3BAR - M5BAR - M7BAR) Turn the nut shown in fig. 6 (step a) anti-
clockwise and then manually turn the spring clockwise to slacken its ten-
sion (fig. 6 - step b).
– (LBAR) Turn the nut shown in fig. 7 (step a) clockwise to slacken the ten-
sion of the balancing spring.
04. Slacken the bolt anchoring the spring to the balancing lever (M3BAR -
M5BAR - M7BAR: fig. 6 - step c; LBAR: fig. 7 - step b).
05. – (M3BAR - M5BAR) Slacken the bolt anchoring the spring to the perforat-
ed plate positioned at the foot of the barrier (fig. 6 - step d).
– (M3BAR - M5BAR) Slacken the bolt anchoring the spring to the perforat-
ed plate positioned at the foot of the barrier (fig. 7 - step c).
06. If you wish to set the pole to close on the right of the barrier, slacken the
gearmotor (fig. 8 - also refer to point 3.6) and turn the balancing lever 90°
(fig. 9).
07. Use Table 4 to identify the new holes to which to hook up the two ends of
the spring.
08. – (M3BAR - M5BAR) Hook the spring plate to the peforated plate at the
foot of the barrier (fig. 10 - step a) then anchor the eye of the spring to the
balancing lever, tightening the bolt all the way (fig. 10 - step b)
– (M7BAR - LBAR) Anchor the upper eye of the spring to the balancing le-
ver, tightening the bolt all the way (fig. 11 - step a); anchor the lower eye
of the spring to the perforated plate at the foot of the barrier, tightening the
bolt all the way (fig. 11 - step b).
09. If you slackened the gearmotor at point 06, tighten it again (fig. 12), refer-
ring to point 3.6.
3.4 - Barrier lift fixture
3.4.1 - If the support surface already exists
01. Open the cabinet of the barrier (fig. 13);
02. Place the barrier on the fixing surface and trace the points where the slots
are to be fixed (fig. 14);
03. Move the barrier and drill the traced surface points; then insert 4 expansion
bolts, not supplied (fig. 15);
04. Position the barrier correctly and secure by means of the relative nuts and
washers not supplied (fig. 16).
3.4.2 - If the support surface does not exist
01. Dig the foundation pit (*) to house the foundation plate;
3.3 - Preliminary work prior to installation
3.3.1 - Identify the scheme on the basis of which to position each plant
component
With reference to the standard layout shown in fig. 1, locate the approximate
position of each component in the system. The diagram shows all compo-
nents in the product package (fig. 3): [a] road barrier with built-in control unit;
[b] pole cover and support; [c] no. 2 photocell boxes; [d] no. 4 half-shells for
pole connection; [e] fixed pole cap; no. 2 connections for protection rubber; no.
2 connections without protection rubber; [f] keys for manually locking and un-
locking the pole; keys for locking the cover; minor metal parts (screws, washers,
etc.); [g] foundation plate; [h] no. 4 fixing bolts.
3.3.2 - Determine the path of the connecting cables
&$87,21– Position the ends of the ducting used for electrical cables in the vi-
cinity of the points at which various components will be connected. Note: The
ducting serves to protect electric cables and prevent accidental damage, such
as in the case of impact. Prepare the electrical cables needed for your system,
referring to fig. 1 and “Table 3 - Technical characteristics of electrical cables”.
3.3.3 - a) - Position the balancing spring in relation to pole weight, com-
plete with the required accessories. b) - Set the direction for
closing the pole: to the right or to the left of the motor.
The barrier leaves the factory with the following settings:
– balancing spring anchored in holes which are not final.
– pole closing manoeuvre to the left.
These settings are arbitrary; you must therefore perform the following checks to
determine whether they should be changed or not (that is, whether or not you
need to move the spring connection on the balancing lever and on the plate at
the foot of the barrier to another hole).
qIf you plan to install only one accessory, identify in ER[q$rof Table 4your bar-
rier model, the planned pole length and, finally, the accessory you intend to
assemble on the pole; then read the corresponding letter and number of the
holes in which to hook the spring;
qIf you plan to install multiple accessories, identify in ER[q%r of Table 4your
barrier model, pole length and, finally, the type and number of accessories you
wish to assemble on the pole; then add up the numbers between brackets for
the applicable accessories. Finally, use the result of the sum to read the letter
and number identifying the holes to which to hook the spring in the lower part
of box “B”.
qIf you must close the pole to the right of the motor, it will be necessary to move
the spring connection to one of the holes on the other arm of the balancing lever.
7$%/(7HFKQLFDOVSHFLƄFDWLRQVRIHOHFWULFDOFDEOHV)LJ
Connection Cable type Maximum admissible length
A: mains power supply cable 3 x 1,5 mm
2
30 m (note 1)
B: BlueBus cable 2 x 0,5 mm
2
20 m (note 2)
C: key-operated selector switch cable 2 cables 2 x 0,25 mm
2
(note 3) 30 m
Input cable Open 2 x 0,25 mm
2
30 m
Input cable Close 2 x 0,25 mm
2
30 m
Flashing light cable (note 4) 2 x 0,5 mm
2
30 m
with aerial RG58 shielded type 15 m (less than 5 m recommended)
Pole indicator cable Open (note 4) 2 x 0,5 mm
2
30 m
Pole lights (note 4) – –
Loop Detector Cable 1 x 1,5 mm
2
twisted (note 5) 20 m twisted (note 5)
0DVWHU6ODYH&DEOH 3 x 0,5 mm
2
20 m
,03257$17t7KHFDEOHVXVHGPXVWEHVXLWHGWRWKHLQVWDOODWLRQHQYLURQPHQW
Note 1 – If the power cable is longer than 30 m, a cable with a larger cross-section is required (3x2.5 mm
2
) and safety earthing is necessary in the vicinity of
the automation.
Note 2 – If the BlueBus cable is longer than 20 m, up to a maximum of 40 m, a cable with a larger cross-section is required (2x1 mm
2
).
Note 3 – These 2 cables may be replaced by a single cable 4x0.5 mm
2
.
Note 4 – Before making the connection, check that the output is programmed for the device to be connected (see paragraph 6.2 - Table 8).
Note 5 – Shorten the two ends coming out of the loop, with at least 20 turns per metre.
TABLE 2 Severity Index
M3BAR M5BAR M7BAR LBAR
Pivot Pole (XBA12) 20 15 –– ––
Speed level 3 15 10 15 15
Speed level 2 0 0 10 10
Interruption of manoeuvre via Foto > 10% 15 10 15 15
Interruption of manoeuvre via Alt > 10% 10 10 15 15
Mobile support (XBA11) –– 10 10 10
Braking 10 10 10 10
Force equal to 7 or 8 10 10 10 10
Force equal to 5 or 6 5 5 5 5
Presence of saline mist 10 10 10 10
Presence of dust or sand 5 5 5 5
Rack –– 5 5 5
Room temperature higher than 40° and lower than 0° C 5 5 5 5