ZED-F9P-Integration manual
Platform Max altitude [m] Max horizontal
velocity [m/s]
Max vertical velocity
[m/s]
Sanity check type Max
position
deviation
Portable 12000 310 50 Altitude and velocity Medium
Stationary 9000 10 6 Altitude and velocity Small
Pedestrian 9000 30 20 Altitude and velocity Small
Automotive 6000 100 15 Altitude and velocity Medium
At sea 500 25 5 Altitude and velocity Medium
Airborne <1g 50000 100 100 Altitude Large
Airborne <2g 50000 250 100 Altitude Large
Airborne <4g 50000 500 100 Altitude Large
Wrist 9000 30 20 Altitude and velocity Medium
Table 12: Dynamic platform model details
Dynamic platforms designed for high acceleration systems (e.g. airborne <2g) can result in a higher
standard deviation in the reported position.
If a sanity check against a limit of the dynamic platform model fails, then the position solution
is invalidated. Table 12 above shows the types of sanity checks which are applied for a particular
dynamic platform model.
3.1.7.2 Navigation input filters
The navigation input filters in CFG-NAVSPG-* configuration group provide the input data of the
navigation engine.
These settings are primarily for the initial standard 2D/3D only GNSS fix indication when
not in RTK float/fixed mode.
Configuration item Description
CFG-NAVSPG-FIXMODE By default, the receiver calculates a 3D position fix if possible but reverts to 2D
position if necessary (auto 2D/3D). The receiver can be forced to only calculate 2D
(2D only) or 3D (3D only) positions.
CFG-NAVSPG-CONSTR_ALT, CFG-
NAVSPG-CONSTR_ALTVAR
The fixed altitude is used if fixMode is set to 2D only. A variance greater than zero
must also be supplied.
CFG-NAVSPG-INFIL_MINELEV Minimum elevation of a satellite above the horizon in order to be used in the
navigation solution. Low elevation satellites may provide degraded accuracy, due to
the long signal path through the atmosphere.
CFG-NAVSPG-INFIL_NCNOTHRS,
CFG-NAVSPG-INFIL_CNOTHRS
A navigation solution will only be attempted if there are at least the given number of
SVs with signals at least as strong as the given threshold.
Table 13: Navigation input filter parameters
If the receiver only has three SVs for calculating a position, the navigation algorithm uses a constant
altitude to compensate for the missing fourth SV. When a SV is lost after a successful 3D fix (min.
four SVs available), the altitude is kept constant at the last known value. This is called a 2D fix.
u-blox receivers do not calculate any navigation solution with less than three SVs.
3.1.7.3 Navigation output filters
The result of a navigation solution is initially classified by the fix type (as detailed in the fixType
field of UBX-NAV-PVT message). This distinguishes between failures to obtain a fix at all ("No Fix")
and cases where a fix has been achieved, which are further subdivided into specific types of fixes
(e.g. 2D, 3D, dead reckoning).
The ZED-F9P firmware does not support the dead reckoning position fix type.
UBX-18010802 - R08
3 Receiver functionality Page 23 of 110
Early production information