A~-2
~5(.)tO
B~··2
'+.otl.
(.1
~
[2:JB
Matrices
of
unequal sizes can be catenated, providing ,that
the
lengths
of
the
co-
ordinates not specified are
the
same (see
the
first example following).
If
the
co-
ordinates not specified are
not
the
same, an error results (see
the
second example
following):
20
30
1.,·0
~:;
0
60
10
20
30
11
~~2
:·5~3
4·'+
,::.,:.-
,.J
,J
61.)
77
88
40
50
60
55
A
:1.
0
20
30
1.
:I.
::.::~.~
:·5~~
'+'+
•
10
20
30
11
22
1.1-0
~.:;O
(~)
()
1::·1::·
d,J
l)(~)
77
BB
40
50
60
55
66
A,[lJB
LENGTH
ERr~DR
A~
[:I.J
B
38
A
10
20
30
40
50
60
B
11
22
33
44
55
66
77
88
A scalar can also be catenated
to
an array.
In
the
following example, a scalar
is
catenated
to
a matrix. Notice
that
the
scalar
is
repeated
to
complete
the
coordinate:
A~2
3pl0
20
30
~O
50
60
A
10
20
30
'+0
~50
60
A,[2J99
1.0
20
30
99
l~O
50
60
99
A,[:LJ99
10
20
30
'+
0
~7j
()
6
()
9("/
99 99
A vector can also be catenated
to
another
array, provided
the
length of the vector
matches
the
length
of
the
coordinate
not
specified. See
the
following examples:
(.1,99
88
10
20
::~()
99
1.1·0
~50
ld)
8B
•
A/t:l]99
88
LENGTH E R
I~O
R
A/[l]
99
88
A
,
10
40
20
30
99
50
60
88
22
33
44
66
77
88
B
33
44
77
88