6-82[6.49] Taylor() polynomial function finds tangent line
......................................
6-81[6.48] Use R>Pθ for four-quadrant arc tangent function
....................................
6-81[6.47] Unsigned infinity displays as undef
..............................................
6-79[6.46] solve() and nsolve() ignore constraints with local variables
............................
6-78[6.45] Determine if a point is inside a triangle
............................................
6-78[6.44] Nest min() in max() to limit an argument
...........................................
6-77[6.43] Dot product (scalar product) for complex vectors
....................................
6-75[6.42] stdDev() and variance() find sample (not population) statistics
.........................
6-73[6.41] Integration error in AMS 2.05
...................................................
6-72[6.40] Write functions with multiple input argument types
..................................
6-71[6.39] Convert equations to a parameterized form
........................................
6-71[6.38] Finance Flash Application function finds days between two dates
.......................
6-71[6.37] Random number generator algorithm
.............................................
6-70[6.36] Integration may return 'undef' for identical integration limits
............................
6-66[6.35] Cumulative normal distribution and inverse
........................................
6-64[6.34] Error function for real arguments
................................................
6-61[6.33] Sine and cosine integrals
......................................................
6-60[6.32] Accurate approximate solutions to quadratic equations with large coefficients
.............
6-57[6.31] Fast 2nd-order interpolation with QuadReg
........................................
6-56[6.30] Spherical coordinate conventions
................................................
6-55[6.29] Dirac's delta (impulse) and Heaviside (step) functions
................................
6-44[6.28] Bilinear interpolation
..........................................................
6-39[6.27] Find Bernoulli numbers and polynomials
..........................................
6-27[6.26] Accurate numerical derivatives with nDeriv() and Ridder's method
......................
6-26[6.25] Polar and rectangular coordinate conversions
......................................
6-26[6.24] Fast Fibonacci Numbers
.......................................................
6-25[6.23] Step-by-step programs
........................................................
6-24[6.22] Linear Interpolation
...........................................................
6-24[6.21] Evaluating polynomials
........................................................
6-23[6.20] Generating random numbers
...................................................
6-22[6.19] Sub-divide integration range to improve accuracy
...................................
6-22[6.18] Use iPart() and int() effectively
..................................................
6-21[6.17] Use dd.mmssss format to convert angles faster
.....................................
6-20[6.16] Transpose operator and dot product find adjoint and complex scalar product
..............
6-19[6.15] Convert equations between rectangular and polar coordinates
.........................
6-19[6.14] Use norm() to find root mean square (RMS) statistic for matrices
.......................
6-17[6.13] Find coefficients of determination for all regression equations
..........................
6-14[6.12] Find faster numerical solutions for polynomials
.....................................
6-14[6.11] Rounding floating point numbers
................................................
6-9[6.10] Exact solutions to cubic and quartic equations
......................................
6-9[6.9] Convert floating-point numbers to exact fractions
....................................
6-8[6.8] Convert trigonometric expressions to exponential format
..............................
6-7[6.7] Complex derivatives
...........................................................
6-6[6.6] Linear regression through a fixed point
............................................
6-5[6.5] Round numbers to significant digits
...............................................
6-3[6.4] Gamma and log-gamma functions
................................................
6-2[6.3] Improving floating-point solutions to simultaneous equations
...........................
6-1[6.2] Use rectangular complex mode for faster results
.....................................
6-1[6.1] Simulate poly function of TI-85/86
................................................
6.0 Math Tips
5-16[5.11] Improve font size of printed program source code
...................................
5-16[5.10] Run GraphLink under Windows XP
..............................................
5-15[5.9] GraphLink software sends either TI-89 or TI-92 Plus files
..............................
5-13[5.8] Opening variables in GraphLink changes some characters
.............................
5-13[5.7] GraphLink switchbox aids CBR/CBL programming
...................................
5-2[5.6] Build your own GraphLink cable (Hess's BCC Serial Link)
.............................
5-2[5.5] Use TalkTI to develop PC applications which communicate with the TI-89 / TI-92 Plus
.......
0 - 5