Index
194 MIKE 21 BW - © DHI
A
Absorbing boundary . . . . . . . . . . 126
ADI algorithm . . . . . . . . . . . . . . 120
Application areas . . . . . . . . . . . . 11
Application, verification and
practical aspects . . . . . . . . . . . 186
APV . . . . . . . . . . . . . . . . . . . 170
Area statistics . . . . . . . . . . . . . . 165
Artificial dissipation . . . . . . . . . . . 121
Artificial land . . . . . . . . . 37
, 112, 171
Artificial porous flow . . . . . . . . . . 140
Atiltness . . . . . . . . . . . . . . . . . 162
B
Backward centering . . . . . . . . . . . 121
Baltic Sea . . . . . . . . . . . . . . . . 31
Batch mode . . . . . . . . . . . . . . . 172
Bathymetry . . . . . . . . . . . . . . . 111
Bathymetry value representing land . . 124
Blow-up . . . . . . . . . . . 121
, 173, 181
Blow-up after first few time steps . . . . 173
Blow-up after some time steps . . . . . 174
Bottom friction . . . . . . . . . . . . . 132
Boussinesq cross terms . . . . . 121
, 177
Boussinesq equations . . . . . . 118
, 182
Boussinesq type equations . . . . . . . 187
Breaker types . . . . . . . . . . . . . . 138
C
Calibration parameters . . . . . . . . . 124
CFD . . . . . . . . . . . . . . . . . . . 12
Chart datum . . . . . . . . . . . . . . 124
Chezy number . . . . . . . . . . . . . 133
Classical boussinesq equations . . . . 119
Closed boundary . . . . . . . . . . . . 126
Cold start . . . . . . . . . . . . . 111
, 117
Computational points per second . . . . 120
Computational speed (CPS) . . . . . . 180
Convective terms . . . . . . . . . . . . 120
Courant number . . . . . . 115
, 123, 178
CPU requirements . . . . . . . . . . . 180
Crash before the first time step . . . . . 177
Cross-momentum derivatives . . . . . . 120
Cross-section of a breaking . . . . . . 137
Cruise terminal . . . . . . . . . . . . . 31
D
1DH module . . . . . . . . . . . . . . 110
2DH module . . . . . . . . . . . . . . 110
Deep water terms . . . . . . . . . . . 178
Deep-water terms . . . . . . . . . . . .37
Deterministic parameters . . . . . . . . 152
DHI’s linear wave calculator . . . . . . 182
Diffraction test . . . . . . . . . . . . . .28
Directional distribution . . . . . . . . . 128
Dissipative scheme . . . . . . . . . . . 120
Downrush . . . . . . . . . . . . . . . 135
E
Eddy viscosity . . . . . . . . . . . . . 134
Enhanced boussinesq equations . . . . 119
Example of a sponge layer map . . . . 149
Example of porosity map . . . . . . . . 141
Examples of wave fields . . . . . . . . 131
Explicit numerical lowpass filter . . . . 135
F
Filter coefficient . . . . . . . . . . . . 136
Filtering . . . . . . . . . . . . . . . . . 135
Final breaking angle . . . . . . . . . . 138
Finite amplitude waves . . . . . . . . . 118
Flow resistance . . . . . . . . . . . . . 143
Flux density . . . . . . . . . . . . . . 127
Frederikshavn harbour . . . . . . . . . .13
G
Galerkin finite element method . . . 11, 110
Gaussian sea state . . . . . . . . . . . 162
Generation line . . . . . . . . . . . . . 127
Getting started . . . . . . . . . . . . . .17
H
Half-time for cut-off roller . . . . . . . . 138
Hanstholm harbour . . . . . . . . . . . .35
Harbour resonance . . . . . . . . . . . 133
Helmholtz equation . . . . . . . . . . . .30
High frequency noise . . . . . . . . . . 121
High-frequency instabilities . . . . . . . 135
Horizontal run-up . . . . . . . . . . . . 168
Hot start . . . . . . . . . . . . . . . . 111
Hot start Parameters . . . . . . . . . . 169
Hot start parameters . . . . . . . . . . 152
I
Incident directional irregular waves . . 132
Initial breaking angle . . . . . . . . . . 137
Initial surface elevation . . . . . . . . . 126