EasyManuals Logo

FLIR A15 User Manual

FLIR A15
156 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #134 background imageLoading...
Page #134 background image
Theory of thermography
20
Another factor, called the emissivity, is required to describe the fraction ε of the radiant
emittance of a blackbody produced by an object at a specific temperature. Thus, we have
the definition:
The spectral emissivity ε
λ
= the ratio of the spectral radiant power from an object to that
from a blackbody at the same temperature and wavelength.
Expressed mathematically, this can be written as the ratio of the spectral emittance of the
object to that of a blackbody as follows:
Generally speaking, there are three types of radiation source, distinguished by the ways in
which the spectral emittance of each varies with wavelength.
A blackbody, for which ε
λ
= ε = 1
A graybody, for which ε
λ
= ε = constant less than 1
A selective radiator, for which ε varies with wavelength
According to Kirchhoff’s law, for any material the spectral emissivity and spectral absorp-
tance of a body are equal at any specified temperature and wavelength. That is:
From this we obtain, for an opaque material (since α
λ
+ ρ
λ
= 1):
For highly polished materials ε
λ
approaches zero, so that for a perfectly reflecting material
(i.e. a perfect mirror) we have:
For a graybody radiator, the Stefan-Boltzmann formula becomes:
This states that the total emissive power of a graybody is the same as a blackbody at the
same temperature reduced in proportion to the value of ε from the graybody.
#T559770; r. AF/30726/30726; en-US
126

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the FLIR A15 and is the answer not in the manual?

FLIR A15 Specifications

General IconGeneral
BrandFLIR
ModelA15
CategoryThermal cameras
LanguageEnglish

Related product manuals