EasyManuals Logo

FLIR T1040 User Manual

FLIR T1040
260 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #241 background imageLoading...
Page #241 background image
Theory of thermography
38
A selective radiator, for which ε varies with wavelength
According to Kirchhoff’s law, for any material the spectral emissivity and spectral absorp-
tance of a body are equal at any specified temperature and wavelength. That is:
From this we obtain, for an opaque material (since α
λ
+ ρ
λ
= 1):
For highly polished materials ε
λ
approaches zero, so that for a perfectly reflecting materi-
al (i.e. a perfect mirror) we have:
For a graybody radiator, the Stefan-Boltzmann formula becomes:
This states that the total emissive power of a graybody is the same as a blackbody at the
same temperature reduced in proportion to the value of ε from the graybody.
Figure 38.8 Spectral radiant emittance of three types of radiators. 1: Spectral radiant emittance; 2: Wave-
length; 3: Blackbody; 4: Selective radiator; 5: Graybody.
Figure 38.9 Spectral emissivity of three types of radiators. 1: Spectral emissivity; 2: Wavelength; 3: Black-
body; 4: Graybody; 5: Selective radiator.
#T559954; r. AP/42311/42335; en-US
227

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the FLIR T1040 and is the answer not in the manual?

FLIR T1040 Specifications

General IconGeneral
BrandFLIR
ModelT1040
CategoryThermal cameras
LanguageEnglish

Related product manuals