extended rather than retract them in the climb to the obstacle. The ex-
ception to this rule would be in a high altitude take-off in hot weather
where climb would be marginal with flaps 10°.
Flap deflections of 30° and 40° are not recommended at any time for
take-off.
PERFORMANCE CHARTS.
Consult the take-off chart in Section V for take-off distances under
various gross weight, altitude, and headwind conditions.
CROSSWIND TAKE-OFFS.
Take-offs into strong crosswinds normally are performed with the
minimum flap setting necessary for the field length, to minimize the
drift angle immediately after take-off. The airplane is accelerated to
a speed slightly higher than normal, then pulled off abruptly to prevent
possible settling back to the runway while drifting. When clear of the
ground, make a coordinated turn into the wind to correct for drift.
CLIMB.
CLIMB DATA.
For detailed data, see Maximum Rate-of-Climb Data chart in
Section V.
CLIMB SPEEDS.
Normal climbs are conducted at 75 to 80 MPH with flaps up and full
throttle, for best engine cooling. The mixture should be full rich unless
the engine is rough due to too rich a mixture. The best rate-of-climb
speeds range from 72 MPH at sea level to 66 MPH at 10, 000 feet. If an
obstruction dictates the use of a steep climb angle, the best angle-of-
climb speed should be used with flaps up and full throttle. These speeds
vary from 52 MPH at sea level to 60 MPH at 10, 000 feet.
NOTE
Steep climbs at these low speeds should be of short
duration to allow improved engine cooling.
2-9