AquaLab 14 FURTHER READING
Van den Berg, C. 1986. Water activity. p. 11-36. In D. MacCarthy
(ed.) Concentration and drying of foods. Elsevier Applied Science
Publishers, London.
Van den Berg, C. 1991. Food-water relations: Progress and inte-
gration, comments and thoughts. In H. Levine, and L. Slade (ed.)
Water Relationships in Foods. Plenum Press, New York.
Van den Berg, C., and S. Bruin. 1981. Water activity and its estima-
tion in food systems: Theoretical aspects. p. 1-61. In L.B. Rockland,
and G.F. Stewart (ed.) Water Activity: Influences on Food Quality.
Academic Press, New York.
Vega-Mercado, H., andG.V. Barbosa-Canovas. 1994. Prediction of
water activity in food systems: A review on theoretical models. Re-
vista Espanola De Ciencia Y Tecnologia De Alimentos 34:368-388.
Vega-Mercado, H., B. Romanach, and G.V. Barbosa-Canovas. 1994.
Prediction of water activity in food systems: A computer program
for predicting water activity in multicomponent foods. Revista Es-
panola De Ciencia Y Tecnologia De Alimentos 34:427-440.
Vos, P.T., and T.P. Labuza. 1974. Technique for measurements of
water activity in the high a
w
range. J. Agric. Food Chem. 22:326-
327.
Voysey, P. 1993. An evaluation of the AquaLab CX-2 system for
measuring water activity. F. M. B. R. A. Digest No. 124 24-25.
Food Safety and Microbiology
Bei, Z.H., and R.-M.J. Nout. 2000. Effects of temperature, wa-
ter activity and gas atmosphere on mycelial growth of tempe fungi
Rhizopus microsporus var. microcporus and R. microsporus var.
oligosporus. World Journal of Microbiology and Biotechnology 16:853-
858.
Beuchat, L.R. 1981. Microbial stability as affected by water activity.
87