EasyManua.ls Logo

HP 15c Collector's Edition

HP 15c Collector's Edition
308 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
136 Section 11: Calculating With Complex Numbers
Keystrokes
Display
2 ´ }
0.0000
2i. Display shows real part.
8 v
-8.0000
6 ´ V
-8.0000
−8 + 6i.
3 y
352.0000
(−8 + 6i)
3
.
*
-1.872.0000
2i (−8 + 6i)
3
.
4 v
4.0000
5 ¤
2.2361
2 *
-4.4721
−2
5.
´
V
4.0000
4
2
5i.
÷
-295.4551
2i
−8
+
6i
3
4
2
5
i
.
2 v 5 ¤
2.2361
4 *
-8.9443
´
V
2.0000
2 −
4
5i.
÷
9.3982
Real part of result.
´ %
-35.1344
Answer: 9.3982 − 35.1344i.
9.3982
2.
Write a program to evaluate the function ω =
2
z
+
1
5z +
3
for different
values of z. (ω
represents a linear fractional transformation, a class
of conformal mappings.) Evaluate ω for z = 1 + 2i.
(Answer: 0.3902 + 0.0122
i
. One possible keystroke sequence is:
´
b
A v v 2 * 1 + ® 5 * 3 + ÷
¦ ´
} | n
.)
3.
Try your hand at a complex polynomial and rework the example on
page 80. You can use the same program to evaluate P(z) = 5z
4
+
2z
3
, where z is some complex number.
Load the stack with z = 7 + 0i and see if you
get the same answer
as before.
(Answer: 12,691.0000 + 0.0000i.)
Now run the program for z = 1 + i.
(Answer −24.0000 + 4.0000i.)

Table of Contents

Related product manuals