DGS-3024 Gigabit Ethernet Switch Manual 
table). If the PVID of the port that received the packet is different from the PVID of the port that is to transmit the packet, 
the Switch will drop the packet.   
Within the Switch, different PVIDs mean different VLANs (remember that two VLANs cannot communicate without an 
external router). So, VLAN identification based upon the PVIDs cannot create VLANs that extend outside a given switch 
(or switch stack). 
Every physical port on a switch has a PVID. 802.1Q ports are also assigned a PVID, for use within the Switch. If no 
VLANs are defined on the Switch, all ports are then assigned to a default VLAN with a PVID equal to 1. Untagged packets 
are assigned the PVID of the port on which they were received. Forwarding decisions are based upon this PVID, in so far as 
VLANs are concerned. Tagged packets are forwarded according to the VID contained within the tag. Tagged packets are 
also assigned a PVID, but the PVID is not used to make packet forwarding decisions, the VID is.    
Tag-aware switches must keep a table to relate PVIDs within the Switch to VIDs on the network. The Switch will compare 
the VID of a packet to be transmitted to the VID of the port that is to transmit the packet. If the two VIDs are different, the 
Switch will drop the packet. Because of the existence of the PVID for untagged packets and the VID for tagged packets, 
tag-aware and tag-unaware network devices can coexist on the same network. 
A switch port can have only one PVID, but can have as many VIDs as the Switch has memory in its VLAN table to store 
them. 
Because some devices on a network may be tag-unaware, a decision must be made at each port on a tag-aware device 
before packets are transmitted - should the packet to be transmitted have a tag or not? If the transmitting port is connected 
to a tag-unaware device, the packet should be untagged. If the transmitting port is connected to a tag-aware device, the 
packet should be tagged. 
Tagging and Untagging 
Every port on an 802.1Q compliant switch can be configured as tagging or untagging. 
Ports with tagging enabled will put the VID number, priority and other VLAN information into the header of all packets 
that flow into and out of it. If a packet has previously been tagged, the port will not alter the packet, thus keeping the VLAN 
information intact. The VLAN information in the tag can then be used by other 802.1Q compliant devices on the network to 
make packet-forwarding decisions.  
Ports with untagging enabled will strip the 802.1Q tag from all packets that flow into and out of those ports. If the packet 
doesn't have an 802.1Q VLAN tag, the port will not alter the packet. Thus, all packets received by and forwarded by an 
untagging port will have no 802.1Q VLAN information. (Remember that the PVID is only used internally within the 
Switch). Untagging is used to send packets from an 802.1Q-compliant network device to a non-compliant network device. 
Ingress Filtering 
A port on a switch where packets are flowing into the Switch and VLAN decisions must be made is referred to as an ingress 
port. If ingress filtering is enabled for a port, the Switch will examine the VLAN information in the packet header (if 
present) and decide whether or not to forward the packet.   
If the packet is tagged with VLAN information, the ingress port will first determine if the ingress port itself is a member of 
the tagged VLAN. If it is not, the packet will be dropped. If the ingress port is a member of the 802.1Q VLAN, the Switch 
then determines if the destination port is a member of the 802.1Q VLAN. If it is not, the packet is dropped. If the 
destination port is a member of the 802.1Q VLAN, the packet is forwarded and the destination port transmits it to its 
attached network segment.  
If the packet is not tagged with VLAN information, the ingress port will tag the packet with its own PVID as a VID (if the 
port is a tagging port). The switch then determines if the destination port is a member of the same VLAN (has the same 
VID) as the ingress port. If it does not, the packet is dropped. If it has the same VID, the packet is forwarded and the 
destination port transmits it on its attached network segment.   
This process is referred to as ingress filtering and is used to conserve bandwidth within the Switch by dropping packets that 
are not on the same VLAN as the ingress port at the point of reception. This eliminates the subsequent processing of 
packets that will just be dropped by the destination port. 
34