EasyManua.ls Logo

Casio fx-CP400 - 4-3 Using G-Solve to Analyze a Conics Graph

Casio fx-CP400
275 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Chapter 4: Conics Application  116
Drawing a Circle
There are two forms that you can use to draw a circle.
One form is the standard form, which allows you to specify the center point and radius:
(
x – H)
2
+ (y – K)
2
= R
2
The other form is the general form, which allows you to specify the coefficients of each term:
Ax
2
+ Ay
2
+ Bx + Cy + D = 0
Drawing an Ellipse
You can use the standard equation
(
− H)
2
A
2
+ = 1
(
− K)
2
B
2
to draw an ellipse.
Drawing a Hyperbola
A hyperbola can be drawn with either a horizontal or vertical orientation. The hyperbola type is determined by
the direction of its principal axis.
The standard form of a hyperbola with a horizontal axis is:
( − H)
2
A
2
= 1
( − K)
2
B
2
The standard form of a hyperbola with a vertical axis is:
( − K)
2
A
2
= 1
( − H)
2
B
2
Drawing a General Conics
Using the conics general equation Ax
2
+ Bxy + Cy
2
+ Dx + Ey + F = 0, you can draw a parabola or hyperbola
whose principal axis is not parallel either to the x-axis or the y-axis, a slanted ellipse, etc.
4-3 Using G-Solve to Analyze a Conics Graph
What You Can Do Using the G-Solve Menu Commands
While there is a graph on the Conics Graph window, you can use a command on the [Analysis] - [G-Solve]
menu to obtain the following information.
x-coordinate for a given y-coordinate ................................................................. G-Solve - x-Cal/y-Cal - x-Cal
y-coordinate for a given x-coordinate ................................................................. G-Solve - x-Cal/y-Cal - y-Cal
Focus of a parabola, ellipse, or hyperbola .............................................................................G-Solve - Focus
Vertex of a parabola, ellipse, or hyperbola ........................................................................... G-Solve - Vertex
Directrix of a parabola ........................................................................................................ G-Solve - Directrix
Axis of symmetry of a parabola ....................................................................................... G-Solve - Symmetry
Length of the latus rectum of a parabola ...................................................... G-Solve - Latus Rectum Length
Center point of a circle, ellipse, or hyperbola ........................................................................G-Solve - Center
Radius of a circle ................................................................................................................. G-Solve - Radius
Asymptotes of a hyperbola ...........................................................................................G-Solve - Asymptotes
Eccentricity of a parabola, ellipse, or hyperbola ........................................................... G-Solve - Eccentricity
x-intercept / y-intercept ...............................................................G-Solve - x-Intercept / G-Solve - y-Intercept
Tip: The color of Directrix, Symmetry, Asymptotes lines drawn using G-Solve is the color specified by the Graph Format
Sketch Color. For more information about Graph Format, see “Graph Format Dialog Box” (page 36).

Table of Contents

Related product manuals