Appendix A: Functions and Instructions 849
simult(
coeffMatrix
,
constMatrix
[
,
tol
]
) ⇒
matrix
Solves multiple systems of linear equations, where
each system has the same equation coefficients but
different constants.
Each column in
constMatrix
must contain the
constants for a system of equations. Each column in
the resulting matrix contains the solution for the
corresponding system.
Solve: x + 2y = 1 x + 2y = 2
3x + 4y =
ë
1 3x + 4y =
ë
3
simult([1,2;3,4],[1,2;ë 1,ë 3])
¸
[
ë 3 ë 7
2 9/2
]
For the first system, x=
ë
3 and y=2. For the
second system, x=
ë
7 and y=9/2.
sin() @ 2W key H W key
sin(
expression1
) ⇒
expression
sin(
list1
) ⇒
list
sin(
expression1
)
returns the sine of the argument as
an expression.
sin(
list1
)
returns a list of the sines of all elements in
list1
.
Note: The argument is interpreted as either a
degree or radian angle, according to the current
angle mode. You can use
ó
or
ô
to override the
angle mode setting temporarily.
In Degree angle mode:
sin((p/4)ô )
¸
‡2
2
sin(45)
¸
‡2
2
sin({0,60,90})
¸ {0
‡3
2
1}
In Radian angle mode:
sin(p/4)
¸
‡2
2
sin(45¡)
¸
‡2
2
sin(
squareMatrix1
) ⇒
squareMatrix
Returns the matrix sine of
squareMatrix1
. This is
not
the same as calculating the sine of each element.
For information about the calculation method, refer
to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode:
sin([1,5,3;4,2,1;6,ë 2,1]) ¸
.942… ë.045… ë.031…
ë.045… .949… ë.020…
ë.048… ë.005… .961…
sinê () @ ¥ Q key H 2 Q key
sinê (
expression1
) ⇒
expression
sinê (
list1
) ⇒
list
sinê (
expression1
)
returns the angle whose sine is
expression1
as an expression.
sinê (
list1
)
returns a list of the inverse sines of each
element of
list1
.
Note: The result is returned as either a degree or
radian angle, according to the current angle mode
setting.
In Degree angle mode:
sinê (1)
¸ 90
In Radian angle mode:
sinê ({0,.2,.5})
¸
{0 .201
...
.523
...
}
sinê(
squareMatrix1
) ⇒
squareMatrix
Returns the matrix inverse sine of
squareMatrix1
.
This is
not
the same as calculating the inverse sine
of each element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode and Rectangular complex
format mode:
sinê([1,5,3;4,2,1;6,ë 2,1])
¸
ë.164…ì.064…øi 1.490…ì 2.105…øi …
.725…ì 1.515…øi .947…ì.778…øi …
2.083…ì 2.632…øi ë 1.790…+1.271…øi …