860 Appendix A: Functions and Instructions
tanh(
squareMatrix1
) ⇒
squareMatrix
Returns the matrix hyperbolic tangent of
squareMatrix1
. This is
not
the same as calculating the
hyperbolic tangent of each element. For information
about the calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode:
tanh([1,5,3;4,2,1;6,ë 2,1])
¸
ë.097… .933… .425…
.488… .538… ë.129…
1.282… ë 1.034… .428…
tanhê () MATH/Hyperbolic menu
tanhê (
expression1
) ⇒
expression
tanhê (
list1
) ⇒
list
tanhê (
expression1
)
returns the inverse hyperbolic
tangent of the argument as an expression.
tanhê (
list1
)
returns a list of the inverse hyperbolic
tangents of each element of
list1
.
In rectangular complex format mode:
tanhê (0)
¸ 0
tanhê ({1,2.1,3})
¸
{
ˆ .518
...
ì 1.570
...
ø
i
ln(2)
2
ì
p
2
ø
i
}
tanhê(
squareMatrix1
) ⇒
squareMatrix
Returns the matrix inverse hyperbolic tangent of
squareMatrix1
. This is
not
the same as calculating the
inverse hyperbolic tangent of each element. For
information about the calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode and Rectangular complex
format mode:
tanhê([1,5,3;4,2,1;6,ë 2,1])
¸
ë.099…+.164…øi .267…ì 1.490…øi …
ë.087…ì.725…øi .479…ì.947…øi …
.511…ì 2.083…øi ë.878…+1.790…øi …
taylor() MATH/Calculus menu
taylor(
expression1
,
var
,
order
[,
point
]) ⇒
expression
Returns the requested Taylor polynomial. The
polynomial includes non-zero terms of integer
degrees from zero through
order
in (
var
minus
point
).
taylor()
returns itself if there is no truncated power
series of this order, or if it would require negative or
fractional exponents. Use substitution and/or
temporary multiplication by a power of
(
var
minus
point
) to determine more general power
series.
point
defaults to zero and is the expansion point.
taylor(
e
^(‡(x)),x,2)
¸
taylor(
e
^(t),t,4)|t=‡(x)
¸
taylor(1/(xù (xì 1)),x,3)
¸
expand(taylor(x/(xù(xì1)),
x,4)/x,x)
¸