EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator - Page 492

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 16-14
Now, use ‘(-X)^3*EXP(-a*X)’ ` LAP µ. The result is exactly the same.
Integration theorem
. Let F(s) = L{f(t)}, then
Convolution theorem
. Let F(s) = L{f(t)} and G(s) = L{g(t)}, then
==
)})(*{()()(
0
tgfduutguf
t
LL
)()()}({)}({ sGsFtgtf = LL
Example 4
– Using the convolution theorem, find the Laplace transform of
(f*g)(t), if f(t) = sin(t), and g(t) = exp(t). To find F(s) = L{f(t)}, and G(s) = L{g(t)},
use: ‘SIN(X)’ ` LAP µ. Result, ‘1/(X^2+1)’, i.e., F(s) = 1/(s
2
+1).
Also, ‘EXP(X)’ ` LAP. Result, ‘1/(X-1)’, i.e., G(s) = 1/(s-1). Thus, L{(f*g)(t)}
= F(s)G(s) = 1/(s
2
+1)1/(s-1) = 1/((s-1)(s
2
+1)) = 1/(s
3
-s
2
+s-1).
Shift theorem for a shift to the right
. Let F(s) = L{f(t)}, then
L{f(t-a)}=e
–as
L{f(t)} = e
–as
F(s).
Shift theorem for a shift to the left
. Let F(s) = L{f(t)}, and a >0, then
Similarity theorem
. Let F(s) = L{f(t)}, and a>0, then L{f(at)} =
(1/a)F(s/a).
Damping theorem
. Let F(s) = L{f(t)}, then L{e
–bt
f(t)} = F(s+b).
Division theorem
. Let F(s) = L{f(t)}, then
).(
1
)(
0
sF
s
duuf
t
=
L
.)()()}({
0
=+
a
stas
dtetfsFeatfL

Table of Contents

Related product manuals