EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 16-15
Laplace transform of a periodic function of period T
:
Limit theorem for the initial value
: Let F(s) = L{f(t)}, then
Limit theorem for the final value
: Let F(s) = L{f(t)}, then
Dirac’s delta function and Heaviside’s step function
In the analysis of control systems it is customary to utilize a type of functions
that represent certain physical occurrences such as the sudden activation of a
switch (Heaviside’s step function, H(t)) or a sudden, instantaneous, peak in an
input to the system (Dirac’s delta function, δ(t)). These belong to a class of
functions known as generalized or symbolic functions [e.g., see Friedman, B.,
1956, Principles and Techniques of Applied Mathematics, Dover Publications
Inc., New York (1990 reprint) ].
The formal definition of Dirac’s delta function
, δ(x), is δ(x) = 0, for x 0, and
Also, if f(x) is a continuous function, then
= ).()()(
00
xfdxxxxf δ
=
s
duuF
t
tf
.)(
)(
L
=
T
st
sT
dtetf
e
tf
0
.)(
1
1
)}({L
)].([lim)(lim
0
0
sFstff
st
==
)].([lim)(lim
0
sFstff
st
==
= .0.1)( dxxδ

Table of Contents

Related product manuals