EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 16-29
−∞=
=
T
n
ndtt
T
ni
tf
T
c
0
.,...2,1,0,1,2,...,,)
2
exp()(
1
π
Function FOURIER provides the coefficient c
n
of the complex-form of the
Fourier series given the function f(t) and the value of n. The function FOURIER
requires you to store the value of the period (T) of a T-periodic function into
the CAS variable PERIOD before calling the function. The function FOURIER is
available in the DERIV sub-menu within the CALC menu („Ö).
Fourier series for a quadratic function
Determine the coefficients c
0
, c
1
, and c
2
for the function f(t) = t
2
+t, with period
T = 2. (Note: Because the integral used by function FOURIER is calculated in
the interval [0,T], while the one defined earlier was calculated in the interval
[-T/2,T/2], we need to shift the function in the t-axis, by subtracting T/2 from t,
i.e., we will use g(t) = f(t-1) = (t-1)
2
+(t-1).)
Using the calculator in ALG mode, first we define functions f(t) and g(t):
Next, we move to the CASDIR sub-directory under HOME to change the value
of variable PERIOD, e.g., (hold) §`J @)CASDI `2 K
@PERIOD `
Return to the sub-directory where you defined functions f and g, and calculate
the coefficients (Accept change to Complex mode when requested):

Table of Contents

Related product manuals