EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 17-13
)
2
(
1
22
)1()
2
()
2
(
)()
2
(
)(
DN
NN
D
FNDN
F
D
NDN
xf
νν
νν
ν
ννν
ν
ννν
+
ΓΓ
+
Γ
=
The calculator provides for values of the upper-tail (cumulative) distribution
function for the F distribution, function UTPF, given the parameters νN and νD,
and the value of F. The definition of this function is, therefore,
===
t
t
FPdFFfdFFfFDNUTPF )(1)(1)(),,( νν
For example, to calculate UTPF(10,5, 2.5) = 0.161834…
Different probability calculations for the F distribution can be defined using the
function UTPF, as follows:
P(F<a) = 1 - UTPF(νN, νD,a)
P(a<F<b) = P(F<b) - P(F<a) = 1 -UTPF(νN, νD,b)- (1 - UTPF(νN, νD,a))
= UTPF(νN, νD,a) - UTPF(νN, νD,b)
P(F>c) = UTPF(νN, νD,a)
Example: Given νN = 10, νD = 5, find:
P(F<2) = 1-UTPF(10,5,2) = 0.7700…
P(5<F<10) = UTPF(10,5,5) – UTPF(10,5,10) = 3.4693..E-2
P(F>5) = UTPF(10,5,5) = 4.4808..E-2
Inverse cumulative distribution functions
For a continuous random variable X with cumulative density function (cdf) F(x)
= P(X<x) = p, to calculate the inverse cumulative distribution function we need
to find the value of x, such that x = F
-1
(p). This value is relatively simple to
find for the cases of the exponential and Weibull distributions
since their cdf’s
have a closed form expression:

Table of Contents

Related product manuals