EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator - Normal Distribution Cdf

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 17-10
],
2
)(
exp[
2
1
)(
2
2
σ
µ
πσ
=
x
xf
where µ is the mean, and σ
2
is the variance of the distribution. To calculate
the value of f(µ,σ
2
,x) for the normal distribution, use function NDIST with the
following arguments: the mean, µ, the variance, σ
2
, and, the value x , i.e.,
NDIST(µ,σ
2
,x). For example, check that for a normal distribution,
f(1.0,0.5,2.0) = 0.20755374.
Normal distribution cdf
The calculator has a function UTPN that calculates the upper-tail normal
distribution, i.e., UTPN(x) = P(X>x) = 1 - P(X<x). To obtain the value of the
upper-tail normal distribution UTPN we need to enter the following values: the
mean, µ; the variance, σ
2
; and, the value x, e.g., UTPN((µ,σ
2
,x)
For example, check that for a normal distribution, with µ = 1.0, σ
2
= 0.5,
UTPN(0.75) = 0.638163. Use UTPN(1.0,0.5,0.75) = 0.638163.
Different probability calculations for normal distributions [X is N(µ,σ
2
)] can be
defined using the function UTPN, as follows:
P(X<a) = 1 - UTPN(µ, σ
2
,a)
P(a<X<b) = P(X<b) - P(X<a) = 1 - UTPN(µ, σ
2
,b) - (1 - UTPN(µ, σ
2
,a))
= UTPN(µ, σ
2
,a) - UTPN(µ, σ
2
,b)
P(X>c) = UTPN(µ, σ
2
,c)
Examples: Using µ = 1.5, and σ
2
= 0.5, find:
P(X<1.0) = 1 - P(X>1.0) = 1 - UTPN(1.5, 0.5, 1.0) = 0.239750.
P(X>2.0) = UTPN(1.5, 0.5, 2.0) = 0.239750.
P(1.0<X<2.0) = F(1.0) - F(2.0) = UTPN(1.5,0.5,1.0) - UTPN(1.5,0.5,2.0)
= 0.7602499 - 0.2397500 = 0.524998.

Table of Contents

Related product manuals