EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 16-64
Numerical solution of second-order ODE
Integration of second-order ODEs can be accomplished by defining the
solution as a vector. As an example, suppose that a spring-mass system is
subject to a damping force proportional to its speed, so that the resulting
differential equation is:
dt
dx
x
d
t
xd
= 962.175.18
2
2
or, x" = - 18.75 x - 1.962 x',
subject to the initial conditions, v = x' = 6, x = 0, at t = 0. We want to find x,
x' at t = 2.
Re-write the ODE as: w' = Aw, where w = [ x x' ]
T
, and A is the 2 x 2
matrix shown below.
=
'962.175.18
10
'
'
x
x
x
x
The initial conditions are now written as w = [0 6]
T
, for t = 0. (Note: The
symbol [ ]
T
means the transpose of the vector or matrix).
To solve this problem, first, create and store the matrix A, e.g., in ALG mode:
Then, activate the numerical differential equation solver by using: ‚ Ï
˜ @@@OK@@@ . To solve the differential equation with starting time t = 0 and
final time t = 2, the input form for the differential equation solver should look
as follows (notice that the Init: value for the Soln: is a vector [0, 6]):

Table of Contents

Related product manuals