EasyManua.ls Logo

HP F2226A - 48GII Graphic Calculator - Page 497

HP F2226A - 48GII Graphic Calculator
864 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 16-19
The result is:
, i.e.,
h(t) = a/(k-1)e
-t
+((k-1)cC
o
-a)/(k-1)e
-kt
.
Thus, cC0 in the results from LDEC represents the initial condition h(0).
Note: When using the function LDEC to solve a linear ODE of order n in f(X),
the result will be given in terms of n constants cC0, cC1, cC2, …, cC(n-1),
representing the initial conditions f(0), f’(0), f”(0), …, f
(n-1)
(0).
Example 2
– Use Laplace transforms to solve the second-order linear equation,
d
2
y/dt
2
+2y = sin 3t.
Using Laplace transforms, we can write:
L{d
2
y/dt
2
+2y} = L{sin 3t},
L{d
2
y/dt
2
} + 2L{y(t)} = L{sin 3t}.
Note: ‘SIN(3*X)’ ` LAP µ produces ‘3/(X^2+9)’, i.e.,
L{sin 3t}=3/(s
2
+9).
With Y(s) = L{y(t)}, and L{d
2
y/dt
2
} = s
2
Y(s) - sy
o
– y
1
, where y
o
= h(0) and y
1
=
h’(0), the transformed equation is
s
2
Y(s) – sy
o
– y
1
+ 2Y(s) = 3/(s
2
+9).
Use the calculator to solve for Y(s), by writing:
‘X^2*Y-X*y0-y1+2*Y=3/(X^2+9)’ ` ‘Y’ ISOL
The result is
‘Y=((X^2+9)*y1+(y0*X^3+9*y0*X+3))/(X^4+11*X^2+18)’.

Table of Contents

Related product manuals