EasyManuals Logo

ST STM32F4 Series User Manual

ST STM32F4 Series
262 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #14 background imageLoading...
Page #14 background image
About this document PM0214
14/262 PM0214 Rev 9
To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements
tightly-coupled system components that reduce processor area while significantly improving
interrupt handling and system debug capabilities. The Cortex-M4 processor implements a
version of the Thumb
®
instruction set based on Thumb-2 technology, ensuring high code
density and reduced program memory requirements. The Cortex-M4 instruction set
provides the exceptional performance expected of a modern 32-bit architecture, with the
high code density of 8-bit and 16-bit microcontrollers.
The Cortex-M4 processor closely integrates a configurable nested interrupt controller
(NVIC), to deliver industry-leading interrupt performance. The NVIC includes a non-
maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight
integration of the processor core and NVIC provides fast execution of interrupt service
routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the
hardware stacking of registers, and the ability to suspend load-multiple and store-multiple
operations. Interrupt handlers do not require any assembler stubs, removing any code
overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead
when switching from one ISR to another.
To optimize low-power designs, the deep sleep function, included in the sleep mode
integrated in the NVIC, enables the STM32 to enter Stop or Standby mode.
1.3.1 System level interface
The Cortex-M4 processor provides multiple interfaces using AMBA
®
technology to provide
high speed, low latency memory accesses. It supports unaligned data accesses and
implements atomic bit manipulation that enables faster peripheral controls, system
spinlocks and thread-safe Boolean data handling.
The Cortex-M4 processor has a memory protection unit (MPU) that provides fine grain
memory control, enabling applications to utilize multiple privilege levels, separating and
protecting code, data and stack on a task-by-task basis. Such requirements are critical in
many embedded applications such as automotive.
1.3.2 Integrated configurable debug
The Cortex-M4 processor implements a complete hardware debug solution. This provides
high system visibility of the processor and memory through either a traditional JTAG port or
a 2-pin Serial Wire Debug (SWD) port that is ideal for small package devices.
For system trace the processor integrates an Instrumentation Trace Macrocell (ITM)
alongside data watchpoints and a profiling unit. To enable simple and cost-effective profiling
of the system events these generate, a Serial Wire Viewer (SWV) can export a stream of
software-generated messages, data trace, and profiling information through a single pin.
The optional Embedded Trace Macrocell
â„¢
(ETM) delivers unrivalled instruction trace
capture in an area far smaller than traditional trace units.

Table of Contents

Other manuals for ST STM32F4 Series

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the ST STM32F4 Series and is the answer not in the manual?

ST STM32F4 Series Specifications

General IconGeneral
BrandST
ModelSTM32F4 Series
CategoryComputer Hardware
LanguageEnglish

Related product manuals