EasyManua.ls Logo

Atmel Atmel-ICE User Manual

Atmel Atmel-ICE
62 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #24 background imageLoading...
Page #24 background image
4. On-chip Debugging
4.1. Introduction
On-chip Debugging
An on-chip debug module is a system allowing a developer to monitor and control execution on a device
from an external development platform, usually through a device known as a debugger or debug adapter.
With an OCD system the application can be executed whilst maintaining exact electrical and timing
characteristics in the target system, while being able to stop execution conditionally or manually and
inspect program flow and memory.
Run Mode
When in Run mode, the execution of code is completely independent of the Atmel-ICE. The Atmel-ICE
will continuously monitor the target device to see if a break condition has occurred. When this happens
the OCD system will interrogate the device through its debug interface, allowing the user to view the
internal state of the device.
Stopped Mode
When a breakpoint is reached, the program execution is halted, but some I/O may continue to run as if no
breakpoint had occurred. For example, assume that a USART transmit has just been initiated when a
breakpoint is reached. In this case the USART continues to run at full speed completing the transmission,
even though the core is in stopped mode.
Hardware Breakpoints
The target OCD module contains a number of program counter comparators implemented in the
hardware. When the program counter matches the value stored in one of the comparator registers, the
OCD enters stopped mode. Since hardware breakpoints require dedicated hardware on the OCD module,
the number of breakpoints available depends upon the size of the OCD module implemented on the
target. Usually one such hardware comparator is ‘reserved’ by the debugger for internal use.
Software Breakpoints
A software breakpoint is a BREAK instruction placed in program memory on the target device. When this
instruction is loaded, program execution will break and the OCD enters stopped mode. To continue
execution a "start" command has to be given from the OCD. Not all Atmel devices have OCD modules
supporting the BREAK instruction.
4.2. SAM Devices with JTAG/SWD
All SAM devices feature the SWD interface for programming and debugging. In addition, some SAM
devices feature a JTAG interface with identical functionality. Check the device datasheet for supported
interfaces of that device.
4.2.1. ARM CoreSight Components
Atmel ARM Cortex-M based microcontrollers implement CoreSight compliant OCD components. The
features of these components can vary from device to device. For further information consult the device's
datasheet as well as CoreSight documentation provided by ARM.
Atmel Atmel-ICE [USER GUIDE]
Atmel-42330C-Atmel-ICE_User Guide-10/2016
24

Table of Contents

Question and Answer IconNeed help?

Do you have a question about the Atmel Atmel-ICE and is the answer not in the manual?

Atmel Atmel-ICE Specifications

General IconGeneral
BrandAtmel
ModelAtmel-ICE
CategoryMicrocontrollers
LanguageEnglish

Summary

Introduction to Atmel-ICE Features

Atmel-ICE Features Overview

Describes the key features of the Atmel-ICE development tool, including compatibility and supported interfaces.

Getting Started with Atmel-ICE

Atmel-ICE Full Kit Contents

Lists the items included in the Atmel-ICE full kit, essential for initial setup and operation.

Assembling the Atmel-ICE Unit

Provides instructions on how to connect cables and prepare the Atmel-ICE unit for use.

Connecting the Atmel-ICE to Target Devices

Connecting AVR and SAM Target Devices

Explains how to connect the Atmel-ICE to various target microcontroller devices.

Connecting to a JTAG Target

Details the procedure for connecting the Atmel-ICE to target devices using the JTAG interface.

On-chip Debugging Introduction

Introduction to On-chip Debugging

Introduces the concept of on-chip debugging and its role in development.

Atmel-ICE Software Integration

Atmel Studio Integration

Explains how to integrate and use the Atmel-ICE with the Atmel Studio IDE.

Advanced Debugging Techniques

debugWIRE Target Techniques

Covers specific techniques and considerations for debugging with the debugWIRE interface.

Release History and Known Issues

Firmware Release History

Lists past firmware versions and their associated changes and improvements.

Product Compliance Overview

Information regarding the product's compliance with RoHS, WEEE, CE, and FCC regulations.

Introduction to System Requirements

System Requirements for Atmel-ICE

Outlines the necessary software and hardware requirements for using the Atmel-ICE.

Getting Started with Atmel-ICE Kits

Atmel-ICE Kit Overview

Provides a diagrammatic overview of the different Atmel-ICE kit options and their components.

Opening the Atmel-ICE Unit

Details the procedure for safely opening the Atmel-ICE unit.

Connecting Atmel-ICE to Targets

Connecting AVR and SAM Target Devices

Explains how to connect the Atmel-ICE to various target microcontroller devices.

Connecting to a JTAG Target

Details the procedure for connecting the Atmel-ICE to target devices using the JTAG interface.

Connecting to an SWD Target

Explains how to connect the Atmel-ICE to target devices using the SWD interface.

On-chip Debugging for SAM Devices

Introduction to On-chip Debugging

Introduces the concept of on-chip debugging and its role in development.

SAM Devices with JTAG/SWD

Details on-chip debugging for SAM devices using JTAG and SWD interfaces.

ARM CoreSight Components Description

Describes the CoreSight components used in Atmel ARM Cortex-M microcontrollers.

AVR UC3 Debugging with JTAG/aWire

Atmel AVR UC3 On-chip Debug System

Explains the on-chip debug system for Atmel AVR UC3 microcontrollers.

JTAG Physical Interface for AVR UC3

Details the physical JTAG interface for AVR UC3 devices.

tinyAVR, megaAVR, XMEGA Device Interfaces

JTAG Physical Interface for AVR Devices

Describes the JTAG physical interface for tinyAVR, megaAVR, and XMEGA devices.

Connecting to a JTAG Target

Guides on connecting the Atmel-ICE to JTAG targets for these device families.

Connecting to an SPI Target

Explains how to connect the Atmel-ICE to target devices using the SPI interface.

megaAVR Debugging Considerations

Software Breakpoints for megaAVR

Discusses limitations and usage of software breakpoints for megaAVR devices.

JTAG Clock Frequency for megaAVR

Details clock frequency considerations for JTAG debugging of megaAVR devices.

AVR XMEGA Debugging Considerations

OCD and Clocking for XMEGA

Explains OCD clocking behavior for XMEGA devices during stopped mode.

Hardware Breakpoints for XMEGA

Details the hardware breakpoint capabilities and restrictions for XMEGA devices.

debugWIRE Special Considerations

debugWIRE Enable Fuse (DWEN) Management

Details the importance and usage of the DWEN fuse for enabling debugwire functionality.

Atmel-ICE Hardware Description

Atmel-ICE Architecture Overview

Provides a block diagram and explanation of the Atmel-ICE's internal architecture.

Software Integration with Atmel Studio

Atmel Studio Integration Guide

Explains how to integrate and use the Atmel-ICE with the Atmel Studio IDE.

Programming Options Configuration

Details the configuration options for programming Atmel AVR and SAM devices.

Debug Options Configuration

Covers important configuration options for debugging within Atmel Studio.

Advanced Debugging Techniques

Atmel AVR UC3 Target Techniques

Discusses advanced debugging techniques applicable to Atmel AVR UC3 targets.

debugWIRE Target Techniques

Covers specific techniques and considerations for debugging with the debugwire interface.

Release History and Known Issues

Firmware Release History Details

Lists past firmware versions and their associated changes and improvements.

Known Issues with Atmel-ICE

Details known issues and limitations with the Atmel-ICE hardware and firmware.

Product Compliance Information

RoHS and WEEE Compliance

Information regarding the product's compliance with RoHS and WEEE directives.

CE and FCC Compliance

Details the product's compliance with CE and FCC regulations for electromagnetic emissions.

Revision History of Document

Related product manuals