EasyManua.ls Logo

Texas Instruments TI-89 Titanium - Page 181

Texas Instruments TI-89 Titanium
306 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Appendix A: Functions and Instructions 175
Apply solve() to an implicit solution if you want
to try to convert it to one or more equivalent
explicit solutions.
deSolve(y'=(cos(y))^2ù x,x,y)
¸
tan(y)=
xñ
2
+@3
When comparing your results with textbook or
manual solutions, be aware that different
methods introduce arbitrary constants at different
points in the calculation, which may produce
different general solutions.
solve(ans(1),y) ¸
y=tanê
(
xñ +2ø@3
2
)
+@n1øp
Note: To type an @ symbol, press:
@ ¥ §
H 2 R
ans(1)|@3=cì 1 and @n1=0 ¸
y=tanê
(
xñ +2ø(cì 1)
2
)
deSolve(
1stOrderOde
and
initialCondition
,
independentVar
,
dependentVar
)
a particular solution
Returns a particular solution that satisfies
1stOrderOde
and
initialCondition
. This is usually
easier than determining a general solution,
substituting initial values, solving for the arbitrary
constant, and then substituting that value into
the general solution.
initialCondition
is an equation of the form:
dependentVar
(
initialIndependentValue
) =
initialDependentValue
The
initialIndependentValue
and
initialDependentValue
can be variables such as x0
and y0 that have no stored values. Implicit
differentiation can help verify implicit solutions.
sin(y)=(yù
e
^(x)+cos(y))y'! ode
¸
sin(y)=(
e
x
øy+cos(y))øy'
deSolve(ode and
y(0)=0,x,y)! soln ¸
ë(2øsin(y)+yñ)
2
=ë(
e
x
ì1)ø
e
ëx
øsin(y)
soln|x=0 and y=0 ¸ true
d
(right(eq)ì left(eq),x)/
(
d
(left(eq)ì right(eq),y))
! impdif(eq,x,y) ¸
Done
ode|y'=impdif(soln,x,y) ¸
true
DelVar ode,soln ¸ Done
deSolve(
2ndOrderOde
and
initialCondition1
and
initialCondition2
,
independentVar
,
dependentVar
)
a particular solution
Returns a particular solution that satisfies
2ndOrderOde
and has a specified value of the
dependent variable and its first derivative at one
point.
deSolve(y''=y^(ë 1/2) and
y(0)=0 and y'(0)=0,t,y) ¸
2øy
3/4
3
=t
solve(ans(1),y) ¸
y=
2
2/3
ø(3øt)
4/3
4
and t0
For
initialCondition1
, use the form:
dependentVar
(
initialIndependentValue
) =
initialDependentValue
For
initialCondition2
, use the form:
dependentVar
' (
initialIndependentValue
) =
initial1stDerivativeValue

Table of Contents

Other manuals for Texas Instruments TI-89 Titanium

Related product manuals