EasyManua.ls Logo

Thytronic Pro-N NVA100X-D - Page 48

Thytronic Pro-N NVA100X-D
376 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
48
NVA100X-D - Manual - 02 - 2016
FUNCTION CHARACTERISTICS
By means vector addition of direct measures the following are calculated (RMS value of fundamen-
tal components):
Phase-to-phase voltages: U
12
, U
23
, U
31
Fundamental component of the calculated residual voltage U
EC
[1]
Fundamental component of the calculated residual currents I
ECH
and I
ECL
[2]
Thermal image Δθ
Phase
[3]
Displacement angle of any phase current respect the corresponding phase-to-neutral voltage:
Phi
L1
, Phi
L2
, Phi
L3
,
Displacement angle of the measured residual current respect the measured residual voltage (posi-
tive with current in lagging direction in respect to voltage): Phi
E
,
Displacement angle of the measured residual current respect the calculated residual voltage (pos-
itive with current in lagging direction in respect to voltage): Phi
EC
Displacement angle of the calculated residual current respect the measured residual voltage (pos-
itive with current in lagging direction in respect to voltage): Phi
E_IEC
Displacement angle of the calculated residual current respect the calculated residual voltage
(positive with current in lagging direction in respect to voltage): Phi
EC_IEC
Note 1 The residual voltage is available as a direct measure U
E
and computed measure U
EC
,
Note 2 The residual currents are available with either direct measurement (IE1 and IE2) and as calculated measure (I
ECH
and I
ECL
)
Note 3 The adjustment and display range of displacements are 0°... 359°
U12.ai
U
L1
U
12
=
U
L1
-
U
L2
U
12
U
23
U
31
U
23
=
U
L2
-
U
L3
U
31
=
U
L3
-
U
L1
U
L2
U
L2
U
L3
U
L1
U
L3
(U
n
)
(U
n
)
(U
n
)
U
L1
U
12
U
31
U
23
U
L3
U
L2
U12.ai
U
L1
U
12
=
U
L1
-
U
L2
U
12
U
23
U
31
U
23
=
U
L2
-
U
L3
U
31
=
U
L3
-
U
L1
U
L2
U
L2
U
L3
U
L1
U
L3
(U
n
)
(U
n
)
(U
n
)
U
L1
U
12
U
31
U
23
U
L3
U
L2
UEC.ai
U
L1
U
EC
=
U
L1
+
U
L2
+
U
L3
U
EC
U
L3
U
L2
(U
En
)
UEC.ai
U
L1
U
EC
=
U
L1
+
U
L2
+
U
L3
U
EC
U
L3
U
L2
(U
En
)
IEC.ai
I
ECH
=
I
L1H
+
I
L2H
+
I
L3H
I
ECH
I
ECH
=
I
L1H
+
I
L2H
+
I
L3H
(I
nH
)
I
ECL
(I
nL
)
I
L1H
, I
L2H
, I
L3H
I
L1L
, I
L2L
, I
L3L
IEC.ai
I
ECH
=
I
L1H
+
I
L2H
+
I
L3H
I
ECH
I
ECH
=
I
L1H
+
I
L2H
+
I
L3H
(I
nH
)
I
ECL
(I
nL
)
I
L1H
, I
L2H
, I
L3H
I
L1L
, I
L2L
, I
L3L
Theta.ai
I
L1L
I
2
I
2
= (I
L1L
+ e
-j120°
I
L2L
+ e
+j120°
I
L3L
)
I
1
= (I
L1L
+ e
+j120°
I
L2L
+ e
-j120°
I
L3L
)
I
L3L
I
L2L
I
1
I
th
= √(I
1
2
+ K
2
2
I
2
2
)
Δθ
θ
B
)
2
θ
dt
I
B
I
th
Δθ
T+ T+
( )
+=
Theta.ai
I
L1L
I
2
I
2
= (I
L1L
+ e
-j120°
I
L2L
+ e
+j120°
I
L3L
)
I
1
= (I
L1L
+ e
+j120°
I
L2L
+ e
-j120°
I
L3L
)
I
L3L
I
L2L
I
1
I
th
= √(I
1
2
+ K
2
2
I
2
2
)
Δθ
θ
B
)
2
θ
dt
I
B
I
th
Δθ
T+ T+
( )
+=
Fase.ai
ϕ
L1
= I
L1
- U
L1
Phi
L1
, Phi
L2
,Phi
L3
Phi
E
Phi
EC
(° )
(° )
(° )
U
L1
ϕ
L2
= I
L2
- U
L2
ϕ
L3
= I
L3
- U
L3
ϕ
E
= U
E
- I
E
ϕ
EC
= U
EC
- I
E
Phi
E_IEC
Phi
EC_IEC
(° )
(° )
ϕ
E_IEC
= U
E
- I
EC
ϕ
EC_IEC
= U
EC
- I
EC
U
L2
U
L2
I
L1L
I
L2L
I
L3L
U
E
U
EC
I
EC
I
E
Fase.ai
ϕ
L1
= I
L1
- U
L1
Phi
L1
, Phi
L2
,Phi
L3
Phi
E
Phi
EC
(° )
(° )
(° )
U
L1
ϕ
L2
= I
L2
- U
L2
ϕ
L3
= I
L3
- U
L3
ϕ
E
= U
E
- I
E
ϕ
EC
= U
EC
- I
E
Phi
E_IEC
Phi
EC_IEC
(° )
(° )
ϕ
E_IEC
= U
E
- I
EC
ϕ
EC_IEC
= U
EC
- I
EC
U
L2
U
L2
I
L1L
I
L2L
I
L3L
U
E
U
EC
I
EC
I
E

Table of Contents

Related product manuals