EasyManuals Logo

FLIR ThermaCam P25 User Manual

FLIR ThermaCam P25
192 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #152 background imageLoading...
Page #152 background image
Planck’s formula, when plotted graphically for various temperatures, produces a
family of curves. Following any particular Planck curve, the spectral emittance is zero
at λ = 0, then increases rapidly to a maximum at a wavelength λ
max
and after passing
it approaches zero again at very long wavelengths. The higher the temperature, the
shorter the wavelength at which maximum occurs.
10327103;a3
Figure 20.4 Blackbody spectral radiant emittance according to Planck’s law, plotted for various absolute
temperatures. 1: Spectral radiant emittance (W/cm
2
× 10
3
(μm)); 2: Wavelength (μm)
20.3.2 Wien’s displacement law
By differentiating Planck’s formula with respect to λ, and finding the maximum, we
have:
This is Wien’s formula (after Wilhelm Wien, 1864–1928), which expresses mathemati-
cally the common observation that colors vary from red to orange or yellow as the
temperature of a thermal radiator increases. The wavelength of the color is the same
as the wavelength calculated for λ
max
. A good approximation of the value of λ
max
for
a given blackbody temperature is obtained by applying the rule-of-thumb 3 000/T
μm. Thus, a very hot star such as Sirius (11 000 K), emitting bluish-white light, radiates
with the peak of spectral radiant emittance occurring within the invisible ultraviolet
spectrum, at wavelength 0.27 μm.
20
138 Publ. No. 1557978 Rev. a155 ENGLISH (EN) February 6, 2006
20 Theory of thermography

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the FLIR ThermaCam P25 and is the answer not in the manual?

FLIR ThermaCam P25 Specifications

General IconGeneral
BrandFLIR
ModelThermaCam P25
CategoryThermal cameras
LanguageEnglish

Related product manuals