The following example illustrates why it is so easy to convert binary values hexadecimal
values:
*
Converting the 4-bit blocks to decimal values does not directly produce a value that corresponds to the complete
16-bit binary value! In contrast, the binary value can be converted directly to hexadecimal notation with exactly the
same value as the binary value.
Octal numbers
Octal numbers are listed here for the sake of completeness only. They are not used in a PLC of
the MELSEC System Q. In the octal system the digits 8 and 9 don`t exist.Here, the current digit
is reset to 0 and the digit in the next position is incremented after the count reaches 7 (0 – 7, 10
– 17, 70 – 77, 100 – 107 etc).
–
Base: 8
– Digits: 0, 1, 2, 3, 4, 5, 6, 7
Summary
The following table provides an overview of the four different number systems:
4–4 MITSUBISHI ELECTRIC
Number Systems An Introduction to Programming
Decimal notation Octal notation Hexadecimal notation Binary notation
0 0 0 0000 0000 0000 0000
1 1 1 0000 0000 0000 0001
2 2 2 0000 0000 0000 0010
3 3 3 0000 0000 0000 0011
4 4 4 0000 0000 0000 0100
5 5 5 0000 0000 0000 0101
6 6 6 0000 0000 0000 0110
7 7 7 0000 0000 0000 0111
8 10 8 0000 0000 0000 1000
9 11 9 0000 0000 0000 1001
10 12 A 0000 0000 0000 1010
11 13 B 0000 0000 0000 1011
12 14 C 0000 0000 0000 1100
13 15 D 0000 0000 0000 1101
14 16 E 0000 0000 0000 1110
15 17 F 0000 0000 0000 1111
16 20 10 0000 0000 0001 0000
::::
99 143 63 0000 0000 0110 0011
::::
1111 0110 10 1 10
0
11
15
5119
F
5B9
Binary
Decimal*
Hexadecimal