EasyManua.ls Logo

HEIDENHAIN TNC 370 - Page 132

HEIDENHAIN TNC 370
333 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
5
Programming Tool Movements
L
5.5 Path Contours - Polar Coordinates
Helical interpolation
A helix is the combination of a circular movement in
a main plane and a linear movement perpendicular
to the plane.
A helix is programmed only in polar coordinates.
Applications:
You can use helical interpolation with form cutters
to machine:
l
Large-diameter internal and external threads
l
Lubrication grooves
input
Fig. 5.40: Helix: a combination of circular and linear paths
l
Total incremental angle of tool traverse on the helix
l
Total height of the helix
Input angle
Always witer the sanw sign for din&ion of rotation and incremental input angle The TNC may otherwise move
the tool on an incorrect path.
Calculate the incremental polar coordinate angle IPA as follows:
IPA = n 360”; where
n = number of revolutions of the helical path.
For IPA you can enter any value from -5400” to +5400” (n = 15).
-_
Input height
Enter the helix height H in the tool axis, The height is calculated as:
H=nxP,
n = number of thread revolutions
P = thread pitch
Radius compensation
Enter the radius compensation for the helix accord-
ing to the table at right.
Internal thread Work direction
Rotation Radius camp.
Right-hand z+
DR+ RL
Left-hand Z+
DR- RR
Right-hand z-
DR- RR
Left-hand
z- DR+ RL
External thread Work direction Rotation Radius camp.
Right-hand z+
DR+ RR
Left-hand z+
DR- RL
Right-hand
z- DR- RL
Left-hand z- DR+ RR
Fig. 5.41: The shape of the helix determines the direction of rotatron
and the radius comcensation
1
L
TNC 370
5-33
L

Table of Contents

Related product manuals