EasyManua.ls Logo

HEIDENHAIN TNC 370 - 7.3 Trigonometric Functions

HEIDENHAIN TNC 370
333 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
7 Programming with Q Parameters
7.3
Trigonometric Functions
Sine, cosine and tangent are the terms for the ratios of the sides of right
triangles. Trigonometric functions simplify many calculations.
For a right triangle,
Sine: sin a = a / c
Cosine: cos a = b I c
Tangent: tan a = a I b = sin a I cos
a
Where
l
c is the side opposite the right angle
l
a is the side opposite the angle
a
l
b is the third side
The angle can be derived from the tangent:
a = arctan
a
= arctan (a / b) = arctan (sin
a / cos a)
Example: a = 10 mm
b = IOmm
a
= arctan (a / b) = arctan 1 = 45”
Furthermore: a2 + b2 = c2 (a2 = a a)
c=l-xF-
Function
;;
saft key
FN6: SINE
e.g. FN6: Q20 = SIN -Q5
Calculate the sine of an angle in degrees (“1
and assign it to a parameter
FN7: COSINE
e.g. FN7: 021 = COS -Q5
Calculate the cosine of an angle in degrees (“1
and assign it to a parameter
FN8: ROOT SUM OF SQUARES
e.g. FN8: QIO = +5 LEN +4
Take the square root of the sum of two squares
and assign it to a parameter
FN13: ANGLE
e.g. FN13: 020 = +I0 ANG -Ql
Calculate the angle from the arc tangent of two
sides or from the sine and cosine of the angle
(0 - angle - 360”) and assign it to a parameter
b
1
Fig. 7.3:
Sides and angles on a right triangle _,
-
0
-
-
J
4
4
-/
7-8
TNC 370

Table of Contents

Related product manuals