EasyManua.ls Logo

Texas Instruments TI-Nspire - Rk23; Root(); Rotate

Texas Instruments TI-Nspire
164 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
TI-Nspire™ Reference Guide 85
rk23()
Catalog
>
rk23(Expr, Var , depVar, {Va r 0 , Va r Ma x }, depVar0, Var St ep
[, diftol]) matrix
rk23(SystemOfExpr, Var , ListOfDepVars, {Va r0 , Va rM ax },
ListOfDepVars0, Va rS te p [, diftol])
matrix
rk23(ListOfExpr, Var , ListOfDepVars, {Va r0 , Va rM ax },
ListOfDepVars0, Va r St e p [, diftol])
matrix
Uses the Runge-Kutta method to solve the system
= Expr(Var , depVar)
with depVar(Va r 0 )=depVar0 on the interval [Va r0 ,Va r M a x]. Returns a
matrix whose first row defines the Va r output values as defined by
Va rSt ep . The second row defines the value of the first solution
component at the corresponding Va r values, and so on.
Expr is the right hand side that defines the ordinary differential
equation (ODE).
SystemOfExpr is a system of right-hand sides that define the system
of ODEs (corresponds to order of dependent variables in
ListOfDepVars).
ListOfExpr is a list of right-hand sides that define the system of ODEs
(corresponds to order of dependent variables in ListOfDepVars).
Va r is the independent variable.
ListOfDepVars is a list of dependent variables.
{Va r0 , Var M ax } is a two-element list that tells the function to
integrate from Va r 0 to Va r Ma x.
ListOfDepVars0 is a list of initial values for dependent variables.
If Va rSt ep evaluates to a nonzero number: sign(Va rS te p) =
sign(Va rM a x-Va r0 ) and solutions are returned at Va r 0 +i*Va rS t e p for
all i=0,1,2,… such that Va r 0 +i*Va r St e p is in [var0,Va r Ma x] (may not
get a solution value at Va r Ma x ).
if Va rSt ep evaluates to zero, solutions are returned at the "Runge-
Kutta" Va r values.
diftol is the error tolerance (defaults to 0.001).
Differential equation:
y'=0.001*y*(100-y) and y(0)=10
To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.
Same equation with diftol set to 1.E•6
System of equations:
with y1(0)=2 and y2(0)=5
root()
Catalog
>
root(Va lu e ) root
root(Va lu e 1, Va lu e2 ) root
root(Va lu e ) returns the square root of Val u e .
root(Va lu e 1, Va lu e2 ) returns the Va lu e 2 root of Val ue 1. Va lu e1
can be a real or complex floating point constant or an integer or
complex rational constant.
Note: See also Nth root template, page 1.
rotate()
Catalog
>
rotate(Integer1[,#ofRotations]) integer
Rotates the bits in a binary integer. You can enter Integer1 in any
number base; it is converted automatically to a signed, 64-bit binary
form. If the magnitude of Integer1 is too large for this form, a
symmetric modulo operation brings it within the range. For more
information, see 4Base2, page 12.
In Bin base mode:
To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.
d
ep
V
a
rd
Vard
--
-------------------
-

Table of Contents

Other manuals for Texas Instruments TI-Nspire

Related product manuals