EasyManua.ls Logo

Xilinx Spartan-6 FPGA Series User Manual

Xilinx Spartan-6 FPGA Series
72 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #38 background imageLoading...
Page #38 background image
38 www.xilinx.com Spartan-6 FPGA PCB Design and Pin Planning
UG393 (v1.1) April 29, 2010
Chapter 2: Power Distribution System
millimeters from the capacitor solder lands on the board, the current loop area is greater
than necessary (see Figure 2-1A).
To reduce the current loop area, vias should be placed directly against capacitor solder
lands (see Figure 2-1B). Never connect vias to the lands with a section of trace (see
Figure 2-1A).
Other improvements of geometry are via-in-pad (via under the solder land), not shown,
and via-beside-pad (vias straddle the lands instead of being placed at the ends of the
lands), shown in Figure 2-1C. Double vias also improve connecting trace geometry and
capacitor land geometry (see Figure 2-1D).
Exceptionally thick boards (> 2.3 mm or 90 mils) have vias with higher parasitic
inductance.
To reduce the parasitic inductance, move critical V
CC
/GND plane sandwiches close to the
top surface where the FPGA is located, and place the highest frequency capacitors on the
top surface where the FPGA is located.
Possibility 3: I/O Signals in PCB are Stronger Than Necessary
If noise in the V
CCO
PDS is still too high after refining the PDS, the I/O interface slew rate
can be reduced. This applies to both outputs from the FPGA and inputs to the FPGA. In
severe cases, excessive overshoot on inputs to the FPGA can reverse-bias the IOB clamp
diodes, injecting current into the V
CCO
PDS.
If large amounts of noise are present on V
CCO
, the drive strength of these interfaces should
be decreased, or different termination should be used (on input or output paths).
Possibility 4: I/O Signal Return Current Traveling in Sub-Optimal Paths
I/O signal return currents can also cause excessive noise in the PDS. For every signal
transmitted by a device into the PCB (and eventually into another device), there is an equal
and opposite current flowing from the PCB into the device's power/ground system. If a
low-impedance return current path is not available, a less optimal, higher impedance path
is used. When I/O signal return currents flow over a less optimal path, voltage changes are
induced in the PDS, and the signal can be corrupted by crosstalk. This can be improved by
ensuring every signal has a closely spaced and fully intact return path.
Methods to correct a sub-optimal return current path:
Restrict signals to fewer routing layers with verified continuous return current paths.
Provide low-impedance paths for AC currents to travel between reference planes
(decoupling capacitors at PCB locations where layer transitions occur).

Table of Contents

Question and Answer IconNeed help?

Do you have a question about the Xilinx Spartan-6 FPGA Series and is the answer not in the manual?

Xilinx Spartan-6 FPGA Series Specifications

General IconGeneral
Device FamilySpartan-6
CategoryFPGA
Number of Logic Cells3, 840 to 147, 443
Block RAM216 Kb to 4, 824 Kb
Maximum User I/O102 to 576
Process Technology45nm
Operating Voltage1.2V
Number of DSP Slices8 to 180
Package OptionsFG256, FG484, FG676, FG900, FG1156, FT256, FTG256, FTG484, FTG676, FTG900, FTG1156

Summary

Chapter 1: PCB Technology Basics

Transmission Lines

Explains the principles of signal transmission over traces and reference planes.

Chapter 2: Power Distribution System

PCB Decoupling Capacitors

Covers capacitor selection, placement, and guidelines for PDS.

Capacitor Specifications

Details electrical characteristics of PCB capacitors and substitution guidelines.

PCB Capacitor Placement and Mounting Techniques

Offers guidelines for optimizing capacitor placement and mounting for low inductance.

0805 Ceramic Capacitor

Details placement and mounting geometries for 4.7 µF capacitors.

0402 Ceramic Capacitor

Details placement and mounting geometries for 0.47 µF capacitors.

Basic PDS Principles

Explains PDS concepts like noise limits, voltage variance, and component roles.

Simulation Methods

Discusses techniques and tools for predicting PDS performance.

PDS Measurements

Describes methods for measuring PDS noise magnitude and spectrum.

Noise Spectrum Measurements

Explains using spectrum analyzers or FFT for determining noise frequencies.

Optimum Decoupling Network Design

Describes using measurements and simulations to optimize PDS design.

Troubleshooting

Addresses common PDS noise issues and suggested resolution methods.

Chapter 3: SelectIO Signaling

Chapter 4: PCB Materials and Traces

Traces

Details trace geometry, routing, and characteristic impedance for high-speed signals.

Chapter 5: Design of Transitions for High-Speed Signals

Time Domain Reflectometry

Explains TDR techniques for identifying excess capacitance or inductance in transitions.

Chapter 6: I/O Pin and Clock Planning

Configuration Modes

Guidelines for pin planning multi-function configuration pins to avoid conflicts.

Memory Controller Block

Covers pin planning considerations for the Memory Controller Block (MCB).

GTP Transceivers

Pin planning considerations for GTP transceivers, including REFCLK connections.

PCI Express

Advises on defining pin placement for PCI Express before other IP.

Global and I/O Clocking

Guides on selecting clock structures and ensuring buffer availability.

I/O Standards and I/O Banking Rules

Defines I/O standards, attributes, and banking rules for pin assignments.

Running Design Rule Checks

Explains using DRCs in software tools to validate clocking and pin assignments.

Related product manuals