Wiring of digital frequency input / digital frequency output5.9

5.9−2
EDSVF9383V EN 7.1−04/2012
 Note!
Æ’ We recommend to use Lenze system cables for wiring.
ƒ For self−made cables only use cables with shielded cores
twisted in pairs.
B
Enable (EN)
Lamp
control (LC)
GND
Z
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
A
X9X10
<50m
A
B
Z
A
A
B
Z
B
Z

9300VEC019
Fig. 5.9−1 Connection of digital frequency input (X9) / digital frequency output (X10)
X9 Slave drive  Signals for CW rotation
X10 Master drive
Cores twisted in pairs
X9 − Digital frequency input
Connector: Pin, 9−pole, Sub−D
Pin 1
2 3 4 5 6 7 8 9
Signal B A A +5 V GND Z Z LC B
0.14 mm
2
(AWG 26)
0.5 mm
2
(AWG 20)
0.14 mm
2
(AWG 26)
0.5 mm
2
(AWG 20)
0.14 mm
2
(AWG 26)
X10 − Digital frequency output
Connector: Socket, 9−pole, Sub−D
Pin 1
2 3 4 5 6 7 8 9
Signal B A A +5 V GND Z Z EN B
0.14 mm
2
(AWG 26)
0.5 mm
2
(AWG 20)
0.14 mm
2
(AWG 26)
0.5 mm
2
(AWG 20)
0.14 mm
2
(AWG 26)
Evaluation of the input signals at X9
Code Function
C0427 = 0
CW rotation Track A leads track B by 90 ° (positive value at DFIN−OUT)
CCW rotation Track A lags track B by 90 ° (negative value at DFIN−OUT)
C0427 = 1
CW rotation Track A transmits the speed
Track B = LOW (positive value at DFIN−OUT)
CCW rotation Track A transmits the speed
Track B = HIGH (negative value at DFIN−OUT)
C0427 = 2
CW rotation Track A transmits the speed and direction of rotation (positive
value at DFIN−OUT)
Track B = LOW
CCW rotation Track B transmits the speed and direction of rotation (negative
value at DFIN−OUT)
Track A = LOW
Wiring
Adjustment