EasyManuals Logo

Atmel ATmega32M1 User Manual

Atmel ATmega32M1
367 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #87 background imageLoading...
Page #87 background image
87
7647H–AVR–03/12
Atmel ATmega16/32/64/M1/C1
11. Timer/Counter0 and Timer/Counter1 Prescalers
Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters
can have different prescaler settings. The description below applies to both Timer/Counter1 and
Timer/Counter0.
11.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (f
CLK_I/O
). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either f
CLK_I/O
/8, f
CLK_I/O
/64, f
CLK_I/O
/256, or
f
CLK_I/O
/1024.
11.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).
It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.
11.3 External Clock Source
An external clock source applied to the Tn pin can be used as Timer/Counter clock (clk
T1
/clk
T0
).
The Tn pin is sampled once every system clock cycle by the pin synchronization logic. The syn-
chronized (sampled) signal is then passed through the edge detector. Figure 11-1 shows a
functional equivalent block diagram of the Tn/T0 synchronization and edge detector logic. The
registers are clocked at the positive edge of the internal system clock (
clk
I/O
). The latch is trans-
parent in the high period of the internal system clock.
The edge detector generates one clk
T1
/clk
T
0
pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.
Figure 11-1. Tn Pin Sampling
The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the Tn/T0 pin to the counter is updated.
Tn_sync
(To Clock
Select Logic)
Edge DetectorSynchronization
DQDQ
LE
DQ
Tn
clk
I/O

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the Atmel ATmega32M1 and is the answer not in the manual?

Atmel ATmega32M1 Specifications

General IconGeneral
BrandAtmel
ModelATmega32M1
CategoryMicrocontrollers
LanguageEnglish

Related product manuals