13.8 Calculation Formula
239
10
13
Chapter 13 Specifications
c: Measurement channel, k: Order of analysis, r: resistance after FFT, i: reactance after FFT
-8. Harmonic Power (Pharm), Harmonic Reactive Power (Qharm), K Factor (KF)
Single Phase 2-
wire
1P2W
Single
Phase
3-wire
1P3W
3-Phase,
3-Wire,
2-Mea-
surement
3P3W2M
3-Phase, 3-Wire, 3-Measurement
3P3W3M
3-Phase,
4-Wire
3P4W
Pharm[W]=Pck P
1k
Pck=+U
ckr
×I
ckr
+U
cki
×I
cki
P
1k
P
2k
P
1k
P
2k
P
1k=
P
2k=
P
3k=
P
1k
P
2k
P
3k
Psumk=
P
1k
+P
2k
Psumk=
P
1k
+P
2k
Psumk=
P
1k
+P
2k
+P
3k
Psumk=
P
1k
+P
2k
+P
3k
• The harmonic power content percentage is calculated by dividing the harmonic power component for the
specified order by the absolute value of the fundamental power component and multiplying by 100.
• For 3P3W2M and 3P3W3M connections, CH1 to CH3 values are used only for interna
l calculations.
Only for use with in-
ternal calculation
Qharm[var]=Qck
Q
1k
Qck=
U
ckr
×I
cki
-U
cki
×I
ckr
Q
1k
Q
2k
Q
1k
Q
2k
Q
1k=
Q
2k=
Q
3k=
Q
1k
Q
2k
Q
3k
Qsumk=
Q
1k
+Q
2k
Qsumk=
Q
1k
+Q
2k
Qsumk=
Q
1k
+Q
2k
+Q
3k
Qsumk=
Q
1k
+Q
2k
+Q
3k
KF[ ] KF
1
KF
4
KFc=
KF
1
KF
2
KF
4
KF
1
KF
2
KF
4
KF
1
KF
2
KF
3
KF
4
KF
1
KF
2
KF
3
KF
4
• The K factor is also called the multiplication factor, and indicates the power loss using the harmonic RMS cur-
rent for the electrical transformer.
1
3
---
U
1kr
U
3kr
–()I
1kr
1
3
---+× U
1ki
U
3ki
–()I
1ki
×
1
3
---
U
2kr
U
1kr
–()I
2kr
1
3
---+× U
2ki
U
1ki
–()I
2ki
×
1
3
---
U
3kr
U
2kr
–()I
3kr
1
3
---+× U
3ki
U
2ki
–()I
3ki
×
1
3
---
U
1kr
U
3kr
–()I
1ki
1
3
---–× U
1ki
U
3ki
–()I
1kr
×
1
3
---
U
2kr
U
1kr
–()I
2ki
1
3
---–× U
2ki
U
1ki
–()I
2kr
×
1
3
---
U
3kr
U
2kr
–()I
3ki
1
3
---–× U
3ki
U
2ki
–()I
3kr
×
k
2
I
2
ck
×
k1=
50
I
2
ck
k1=
50
------------------------------------