EasyManua.ls Logo

HP 50G

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 5-21
The PCOEF function
Given an array containing the roots of a polynomial, the function PCOEF
generates an array containing the coefficients of the corresponding polynomial.
The coefficients correspond to decreasing order of the independent variable.
For example: PCOEF([-2,–1,0,1,1,2]) = [1. –1. –5. 5. 4. –4. 0.], which
represents the polynomial X
6
-X
5
-5X
4
+5X
3
+4X
2
-4X.
The PROOT function
Given an array containing the coefficients of a polynomial, in decreasing order,
the function PROOT provides the roots of the polynomial. Example, from
X
2
+5X-6 =0, PROOT([1, –5, 6]) = [2. 3.].
The PTAYL function
Given a polynomial P(X) and a number a, the function PTAYL is used to obtain
an expression Q(X-a) = P(X), i.e., to develop a polynomial in powers of (X- a).
This is also known as a Taylor polynomial, from which the name of the function,
Polynomial & TAYLor, follow:
For example, PTAYL(‘X^3-2*X+2’,2) = ‘X^3+6*X^2+10*X+6’.
In actuality, you should interpret this result to mean
‘(X-2) ^3+6*(X-2) ^2+10*(X-2) +6’.
Let’s check by using the substitution: ‘X = x – 2’. We recover the original
polynomial, but in terms of lower-case x rather than upper-case x.
The QUOT and REMAINDER functions
The functions QUOT and REMAINDER provide, respectively, the quotient Q(X)
and the remainder R(X), resulting from dividing two polynomials, P
1
(X) and
P
2
(X). In other words, they provide the values of Q(X) and R(X) from P
1
(X)/P
2
(X)
= Q(X) + R(X)/P
2
(X). For example,
QUOT(X^3-2*X+2, X-1) = X^2+X-1
REMAINDER(X^3-2*X+2, X-1) = 1.
Thus, we can write: (X
3
-2X+2)/(X-1) = X
2
+X-1 + 1/(X-1).

Table of Contents

Other manuals for HP 50G

Related product manuals