EasyManua.ls Logo

HP 50G

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 5-22
The EPSX0 function and the CAS variable EPS
The variable
ε
(epsilon) is typically used in mathematical textbooks to represent
a very small number. The calculator’s CAS creates a variable EPS, with default
value 0.0000000001 = 10
-10
, when you use the EPSX0 function. You can
change this value, once created, if you prefer a different value for EPS. The
function EPSX0, when applied to a polynomial, will replace all coefficients
whose absolute value is less than EPS with a zero. Function EPSX0 is not
available in the ARITHMETIC menu, it must be accessed from the function
catalog (N). Example:
EPSX0(‘X^3-1.2E-12*X^2+1.2E-6*X+6.2E-11)=
‘X^3-0*X^2+.0000012*X+0’.
With μ: ‘X^3+.0000012*X’.
The PEVAL function
The functions PEVAL (Polynomial EVALuation) can be used to evaluate a
polynomial p(x) = a
n
x
n
+a
n-1
x
n-1
+ …+ a
2
x
2
+a
1
x+ a
0
, given an array of
coefficients [a
n
, a
n-1
, … a
2
, a
1
, a
0
] and a value of x
0
. The result is the
evaluation p(x
0
). Function PEVAL is not available in the ARITHMETIC menu, it
must be accessed from the function catalog (‚N). Example:
PEVAL([1,5,6,1],5) = 281.
The TCHEBYCHEFF function
The function TCHEBYCHEFF(n) generates the Tchebycheff (or Chebyshev)
polynomial of the first kind, order n, defined as T
n
(X) = cos(n
arccos(X)). If the
integer n is negative (n < 0), the function TCHEBYCHEFF(n) generates the
Tchebycheff polynomial of the second kind, order n, defined as T
n
(X) =
sin(n
arccos(X))/sin(arccos(X)). Examples:
TCHEBYCHEFF(3) = 4*X^3-3*X
TCHEBYCHEFF(-3) = 4*X^2-1
Note: you could get the latter result by using PROPFRAC:
PROPFRAC(‘(X^3-2*X+2)/(X-1)’) = ‘X^2+X-1 + 1/(X-1)’.

Table of Contents

Other manuals for HP 50G

Related product manuals