EasyManua.ls Logo

HP 50G

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 17-12
The calculator provides for values of the upper-tail (cumulative) distribution
function for the
χ
2
-distribution using [UTPC] given the value of x and the
parameter
ν. The definition of this function is, therefore,
To use this function, we need the degrees of freedom,
ν, and the value of the
chi-square variable, x, i.e., UTPC(
ν,x). For example, UTPC(5, 2.5) =
0.776495…
Different probability calculations for the Chi-squared distribution can be defined
using the function UTPC, as follows:
Θ P(X<a) = 1 - UTPC(
ν,a)
Θ P(a<X<b) = P(X<b) - P(X<a) = 1 - UTPC(
ν,b) - (1 - UTPC(ν,a)) =
UTPC(
ν,a) - UTPC(ν,b)
Θ P(X>c) = UTPC(
ν,c)
Examples: Given
ν = 6, determine:
P(X<5.32) = 1-UTPC(6,5.32) = 0.4965..
P(1.2<X<10.5) = UTPC(6,1.2)-UTPC(6,10.5) = 0.8717…
P(X> 20) = UTPC(6,20) = 2.769..E-3
The F distribution
The F distribution has two parameters νN = numerator degrees of freedom, and
νD = denominator degrees of freedom. The probability distribution
function (pdf) is given by
===
t
t
xXPdxxfdxxfxUTPC )(1)(1)(),(
ν
)
2
(
1
22
)1()
2
()
2
(
)()
2
(
)(
DN
NN
D
FNDN
F
D
NDN
xf
νν
νν
ν
ννν
ν
ννν
+
ΓΓ
+
Γ
=

Table of Contents

Other manuals for HP 50G

Related product manuals