EasyManua.ls Logo

HP 50G

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 14-9
Jacobian of coordinate transformation
Consider the coordinate transformation x = x(u,v), y = y(u,v). The Jacobian of
this transformation is defined as
.
When calculating an integral using such transformation, the expression to use
is , where R’ is the region R
expressed in (u,v) coordinates.
Double integral in polar coordinates
To transform from polar to Cartesian coordinates we use x(r,θ) = r cos θ, and
y(r, θ) = r sin θ. Thus, the Jacobian of the transformation is
With this result, integrals in polar coordinates are written as
==
v
y
u
y
v
x
u
x
JJ det)det(||
∫∫∫∫
=
'
||)],(),,([),(
RR
dudvJvuyvuxdydxyx
φφ
r
r
r
y
r
y
x
r
x
J =
=
=
)cos()sin(
)sin()cos(
||
θθ
θθ
θ
θ

Table of Contents

Other manuals for HP 50G

Related product manuals