EasyManua.ls Logo

HP 50G

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 17-11
where Γ(α) = (α-1)! is the GAMMA function defined in Chapter 3.
The calculator provides for values of the upper-tail (cumulative) distribution
function for the t-distribution, function UTPT, given the parameter
ν and the value
of t, i.e., UTPT(
ν,t). The definition of this function is, therefore,
For example, UTPT(5,2.5) = 2.7245…E-2. Other probability calculations for the
t-distribution can be defined using the function UTPT, as follows:
Θ P(T<a) = 1 - UTPT(
ν,a)
Θ P(a<T<b) = P(T<b) - P(T<a) = 1 - UTPT(
ν,b) - (1 - UTPT(ν,a)) =
UTPT(
ν,a) - UTPT(ν,b)
Θ P(T>c) = UTPT(
ν,c)
Examples: Given
ν = 12, determine:
P(T<0.5) = 1-UTPT(12,0.5) = 0.68694..
P(-0.5<T<0.5) = UTPT(12,-0.5)-UTPT(12,0.5) = 0.3738…
P(T> -1.2) = UTPT(12,-1.2) = 0.8733…
The Chi-square distribution
The Chi-square (χ
2
) distribution has one parameter ν, known as the degrees of
freedom. The probability distribution function (pdf) is given by
<<−∞+
Γ
+
Γ
=
+
t
t
tf ,)1(
)
2
(
)
2
1
(
)(
2
1
2
ν
ν
πν
ν
ν
===
t
t
tTPdttfdttftUTPT )(1)(1)(),(
ν
0,0,
)
2
(2
1
)(
2
1
2
2
>>
Γ
=
xexxf
x
ν
ν
ν
ν

Table of Contents

Other manuals for HP 50G

Related product manuals